SimpleRegression.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.stat.regression;
import java.io.Serializable;
import org.hipparchus.distribution.continuous.TDistribution;
import org.hipparchus.exception.LocalizedCoreFormats;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.stat.LocalizedStatFormats;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.MathUtils;
import org.hipparchus.util.Precision;
/**
* Estimates an ordinary least squares regression model
* with one independent variable.
* <p>
* <code> y = intercept + slope * x </code></p>
* <p>
* Standard errors for <code>intercept</code> and <code>slope</code> are
* available as well as ANOVA, r-square and Pearson's r statistics.</p>
* <p>
* Observations (x,y pairs) can be added to the model one at a time or they
* can be provided in a 2-dimensional array. The observations are not stored
* in memory, so there is no limit to the number of observations that can be
* added to the model.</p>
* <p>* <strong>Usage Notes</strong>:</p>
* <ul>
* <li> When there are fewer than two observations in the model, or when
* there is no variation in the x values (i.e. all x values are the same)
* all statistics return <code>NaN</code>. At least two observations with
* different x coordinates are required to estimate a bivariate regression
* model.
* </li>
* <li> Getters for the statistics always compute values based on the current
* set of observations -- i.e., you can get statistics, then add more data
* and get updated statistics without using a new instance. There is no
* "compute" method that updates all statistics. Each of the getters performs
* the necessary computations to return the requested statistic.
* </li>
* <li> The intercept term may be suppressed by passing {@code false} to
* the {@link #SimpleRegression(boolean)} constructor. When the
* {@code hasIntercept} property is false, the model is estimated without a
* constant term and {@link #getIntercept()} returns {@code 0}.</li>
* </ul>
*
*/
public class SimpleRegression implements Serializable, UpdatingMultipleLinearRegression {
/** Serializable version identifier */
private static final long serialVersionUID = -3004689053607543335L;
/** sum of x values */
private double sumX;
/** total variation in x (sum of squared deviations from xbar) */
private double sumXX;
/** sum of y values */
private double sumY;
/** total variation in y (sum of squared deviations from ybar) */
private double sumYY;
/** sum of products */
private double sumXY;
/** number of observations */
private long n;
/** mean of accumulated x values, used in updating formulas */
private double xbar;
/** mean of accumulated y values, used in updating formulas */
private double ybar;
/** include an intercept or not */
private final boolean hasIntercept;
// ---------------------Public methods--------------------------------------
/**
* Create an empty SimpleRegression instance
*/
public SimpleRegression() {
this(true);
}
/**
* Create a SimpleRegression instance, specifying whether or not to estimate
* an intercept.
*
* <p>Use {@code false} to estimate a model with no intercept. When the
* {@code hasIntercept} property is false, the model is estimated without a
* constant term and {@link #getIntercept()} returns {@code 0}.</p>
*
* @param includeIntercept whether or not to include an intercept term in
* the regression model
*/
public SimpleRegression(boolean includeIntercept) {
super();
hasIntercept = includeIntercept;
}
/**
* Adds the observation (x,y) to the regression data set.
* <p>
* Uses updating formulas for means and sums of squares defined in
* "Algorithms for Computing the Sample Variance: Analysis and
* Recommendations", Chan, T.F., Golub, G.H., and LeVeque, R.J.
* 1983, American Statistician, vol. 37, pp. 242-247, referenced in
* Weisberg, S. "Applied Linear Regression". 2nd Ed. 1985.</p>
*
*
* @param x independent variable value
* @param y dependent variable value
*/
public void addData(final double x,final double y) {
if (n == 0) {
xbar = x;
ybar = y;
} else {
if( hasIntercept ){
final double fact1 = 1.0 + n;
final double fact2 = n / (1.0 + n);
final double dx = x - xbar;
final double dy = y - ybar;
sumXX += dx * dx * fact2;
sumYY += dy * dy * fact2;
sumXY += dx * dy * fact2;
xbar += dx / fact1;
ybar += dy / fact1;
}
}
if( !hasIntercept ){
sumXX += x * x ;
sumYY += y * y ;
sumXY += x * y ;
}
sumX += x;
sumY += y;
n++;
}
/**
* Appends data from another regression calculation to this one.
*
* <p>The mean update formulae are based on a paper written by Philippe
* Pébay:
* <a
* href="http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf">
* Formulas for Robust, One-Pass Parallel Computation of Covariances and
* Arbitrary-Order Statistical Moments</a>, 2008, Technical Report
* SAND2008-6212, Sandia National Laboratories.</p>
*
* @param reg model to append data from
*/
public void append(SimpleRegression reg) {
if (n == 0) {
xbar = reg.xbar;
ybar = reg.ybar;
sumXX = reg.sumXX;
sumYY = reg.sumYY;
sumXY = reg.sumXY;
} else {
if (hasIntercept) {
final double fact1 = reg.n / (double) (reg.n + n);
final double fact2 = n * reg.n / (double) (reg.n + n);
final double dx = reg.xbar - xbar;
final double dy = reg.ybar - ybar;
sumXX += reg.sumXX + dx * dx * fact2;
sumYY += reg.sumYY + dy * dy * fact2;
sumXY += reg.sumXY + dx * dy * fact2;
xbar += dx * fact1;
ybar += dy * fact1;
}else{
sumXX += reg.sumXX;
sumYY += reg.sumYY;
sumXY += reg.sumXY;
}
}
sumX += reg.sumX;
sumY += reg.sumY;
n += reg.n;
}
/**
* Removes the observation (x,y) from the regression data set.
* <p>
* Mirrors the addData method. This method permits the use of
* SimpleRegression instances in streaming mode where the regression
* is applied to a sliding "window" of observations, however the caller is
* responsible for maintaining the set of observations in the window.</p>
*
* The method has no effect if there are no points of data (i.e. n=0)
*
* @param x independent variable value
* @param y dependent variable value
*/
public void removeData(final double x,final double y) {
if (n > 0) {
if (hasIntercept) {
final double fact1 = n - 1.0;
final double fact2 = n / (n - 1.0);
final double dx = x - xbar;
final double dy = y - ybar;
sumXX -= dx * dx * fact2;
sumYY -= dy * dy * fact2;
sumXY -= dx * dy * fact2;
xbar -= dx / fact1;
ybar -= dy / fact1;
} else {
final double fact1 = n - 1.0;
sumXX -= x * x;
sumYY -= y * y;
sumXY -= x * y;
xbar -= x / fact1;
ybar -= y / fact1;
}
sumX -= x;
sumY -= y;
n--;
}
}
/**
* Adds the observations represented by the elements in
* <code>data</code>.
* <p>
* <code>(data[0][0],data[0][1])</code> will be the first observation, then
* <code>(data[1][0],data[1][1])</code>, etc.</p>
* <p>
* This method does not replace data that has already been added. The
* observations represented by <code>data</code> are added to the existing
* dataset.</p>
* <p>
* To replace all data, use <code>clear()</code> before adding the new
* data.</p>
*
* @param data array of observations to be added
* @throws MathIllegalArgumentException if the length of {@code data[i]} is not
* greater than or equal to 2
*/
public void addData(final double[][] data) throws MathIllegalArgumentException {
for (int i = 0; i < data.length; i++) {
if( data[i].length < 2 ){
throw new MathIllegalArgumentException(LocalizedStatFormats.INVALID_REGRESSION_OBSERVATION,
data[i].length, 2);
}
addData(data[i][0], data[i][1]);
}
}
/**
* Adds one observation to the regression model.
*
* @param x the independent variables which form the design matrix
* @param y the dependent or response variable
* @throws MathIllegalArgumentException if the length of {@code x} does not equal
* the number of independent variables in the model
*/
@Override
public void addObservation(final double[] x,final double y)
throws MathIllegalArgumentException {
if( x == null || x.length == 0 ){
throw new MathIllegalArgumentException(LocalizedStatFormats.INVALID_REGRESSION_OBSERVATION,x!=null?x.length:0, 1);
}
addData( x[0], y );
}
/**
* Adds a series of observations to the regression model. The lengths of
* x and y must be the same and x must be rectangular.
*
* @param x a series of observations on the independent variables
* @param y a series of observations on the dependent variable
* The length of x and y must be the same
* @throws MathIllegalArgumentException if {@code x} is not rectangular, does not match
* the length of {@code y} or does not contain sufficient data to estimate the model
*/
@Override
public void addObservations(final double[][] x,final double[] y) throws MathIllegalArgumentException {
MathUtils.checkNotNull(x, LocalizedCoreFormats.INPUT_ARRAY);
MathUtils.checkNotNull(y, LocalizedCoreFormats.INPUT_ARRAY);
MathUtils.checkDimension(x.length, y.length);
boolean obsOk = true;
for( int i = 0 ; i < x.length; i++){
if( x[i] == null || x[i].length == 0 ){
obsOk = false;
}
}
if( !obsOk ){
throw new MathIllegalArgumentException(
LocalizedStatFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS,
0, 1);
}
for( int i = 0 ; i < x.length ; i++){
addData( x[i][0], y[i] );
}
}
/**
* Removes observations represented by the elements in <code>data</code>.
* <p>
* If the array is larger than the current n, only the first n elements are
* processed. This method permits the use of SimpleRegression instances in
* streaming mode where the regression is applied to a sliding "window" of
* observations, however the caller is responsible for maintaining the set
* of observations in the window.</p>
* <p>
* To remove all data, use <code>clear()</code>.</p>
*
* @param data array of observations to be removed
*/
public void removeData(double[][] data) {
for (int i = 0; i < data.length && n > 0; i++) {
removeData(data[i][0], data[i][1]);
}
}
/**
* Clears all data from the model.
*/
@Override
public void clear() {
sumX = 0d;
sumXX = 0d;
sumY = 0d;
sumYY = 0d;
sumXY = 0d;
n = 0;
}
/**
* Returns the number of observations that have been added to the model.
*
* @return n number of observations that have been added.
*/
@Override
public long getN() {
return n;
}
/**
* Returns the "predicted" <code>y</code> value associated with the
* supplied <code>x</code> value, based on the data that has been
* added to the model when this method is activated.
* <p>
* <code> predict(x) = intercept + slope * x </code></p>
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @param x input <code>x</code> value
* @return predicted <code>y</code> value
*/
public double predict(final double x) {
final double b1 = getSlope();
if (hasIntercept) {
return getIntercept(b1) + b1 * x;
}
return b1 * x;
}
/**
* Returns the intercept of the estimated regression line, if
* {@link #hasIntercept()} is true; otherwise 0.
* <p>
* The least squares estimate of the intercept is computed using the
* <a href="http://www.xycoon.com/estimation4.htm">normal equations</a>.
* The intercept is sometimes denoted b0.</p>
* <p><strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return the intercept of the regression line if the model includes an
* intercept; 0 otherwise
* @see #SimpleRegression(boolean)
*/
public double getIntercept() {
return hasIntercept ? getIntercept(getSlope()) : 0.0;
}
/**
* Returns true if the model includes an intercept term.
*
* @return true if the regression includes an intercept; false otherwise
* @see #SimpleRegression(boolean)
*/
@Override
public boolean hasIntercept() {
return hasIntercept;
}
/**
* Returns the slope of the estimated regression line.
* <p>
* The least squares estimate of the slope is computed using the
* <a href="http://www.xycoon.com/estimation4.htm">normal equations</a>.
* The slope is sometimes denoted b1.</p>
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double.NaN</code> is
* returned.
* </li></ul>
*
* @return the slope of the regression line
*/
public double getSlope() {
if (n < 2) {
return Double.NaN; //not enough data
}
if (FastMath.abs(sumXX) < 10 * Double.MIN_VALUE) {
return Double.NaN; //not enough variation in x
}
return sumXY / sumXX;
}
/**
* Returns the <a href="http://www.xycoon.com/SumOfSquares.htm">
* sum of squared errors</a> (SSE) associated with the regression
* model.
* <p>
* The sum is computed using the computational formula</p>
* <p>
* <code>SSE = SYY - (SXY * SXY / SXX)</code></p>
* <p>
* where <code>SYY</code> is the sum of the squared deviations of the y
* values about their mean, <code>SXX</code> is similarly defined and
* <code>SXY</code> is the sum of the products of x and y mean deviations.
* </p><p>
* The sums are accumulated using the updating algorithm referenced in
* {@link #addData}.</p>
* <p>
* The return value is constrained to be non-negative - i.e., if due to
* rounding errors the computational formula returns a negative result,
* 0 is returned.</p>
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return sum of squared errors associated with the regression model
*/
public double getSumSquaredErrors() {
return FastMath.max(0d, sumYY - sumXY * sumXY / sumXX);
}
/**
* Returns the sum of squared deviations of the y values about their mean.
* <p>
* This is defined as SSTO
* <a href="http://www.xycoon.com/SumOfSquares.htm">here</a>.</p>
* <p>
* If {@code n < 2}, this returns <code>Double.NaN</code>.</p>
*
* @return sum of squared deviations of y values
*/
public double getTotalSumSquares() {
if (n < 2) {
return Double.NaN;
}
return sumYY;
}
/**
* Returns the sum of squared deviations of the x values about their mean.
*
* <p>If {@code n < 2}, this returns <code>Double.NaN</code>.</p>
*
* @return sum of squared deviations of x values
*/
public double getXSumSquares() {
if (n < 2) {
return Double.NaN;
}
return sumXX;
}
/**
* Returns the sum of crossproducts, x<sub>i</sub>*y<sub>i</sub>.
*
* @return sum of cross products
*/
public double getSumOfCrossProducts() {
return sumXY;
}
/**
* Returns the sum of squared deviations of the predicted y values about
* their mean (which equals the mean of y).
* <p>
* This is usually abbreviated SSR or SSM. It is defined as SSM
* <a href="http://www.xycoon.com/SumOfSquares.htm">here</a></p>
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double.NaN</code> is
* returned.
* </li></ul>
*
* @return sum of squared deviations of predicted y values
*/
public double getRegressionSumSquares() {
return getRegressionSumSquares(getSlope());
}
/**
* Returns the sum of squared errors divided by the degrees of freedom,
* usually abbreviated MSE.
* <p>
* If there are fewer than <strong>three</strong> data pairs in the model,
* or if there is no variation in <code>x</code>, this returns
* <code>Double.NaN</code>.</p>
*
* @return sum of squared deviations of y values
*/
public double getMeanSquareError() {
if (n < 3) {
return Double.NaN;
}
return hasIntercept ? (getSumSquaredErrors() / (n - 2)) : (getSumSquaredErrors() / (n - 1));
}
/**
* Returns <a href="http://mathworld.wolfram.com/CorrelationCoefficient.html">
* Pearson's product moment correlation coefficient</a>,
* usually denoted r.
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return Pearson's r
*/
public double getR() {
double b1 = getSlope();
double result = FastMath.sqrt(getRSquare());
if (b1 < 0) {
result = -result;
}
return result;
}
/**
* Returns the <a href="http://www.xycoon.com/coefficient1.htm">
* coefficient of determination</a>,
* usually denoted r-square.
* <p>* <strong>Preconditions</strong>:</p>
* <ul>
* <li>At least two observations (with at least two different x values)
* must have been added before invoking this method. If this method is
* invoked before a model can be estimated, <code>Double,NaN</code> is
* returned.
* </li></ul>
*
* @return r-square
*/
public double getRSquare() {
double ssto = getTotalSumSquares();
return (ssto - getSumSquaredErrors()) / ssto;
}
/**
* Returns the <a href="http://www.xycoon.com/standarderrorb0.htm">
* standard error of the intercept estimate</a>,
* usually denoted s(b0).
* <p>
* If there are fewer that <strong>three</strong> observations in the
* model, or if there is no variation in x, this returns
* <code>Double.NaN</code>.</p> Additionally, a <code>Double.NaN</code> is
* returned when the intercept is constrained to be zero
*
* @return standard error associated with intercept estimate
*/
public double getInterceptStdErr() {
if( !hasIntercept ){
return Double.NaN;
}
return FastMath.sqrt(
getMeanSquareError() * ((1d / n) + (xbar * xbar) / sumXX));
}
/**
* Returns the <a href="http://www.xycoon.com/standerrorb(1).htm">standard
* error of the slope estimate</a>,
* usually denoted s(b1).
* <p>
* If there are fewer that <strong>three</strong> data pairs in the model,
* or if there is no variation in x, this returns <code>Double.NaN</code>.
* </p>
*
* @return standard error associated with slope estimate
*/
public double getSlopeStdErr() {
return FastMath.sqrt(getMeanSquareError() / sumXX);
}
/**
* Returns the half-width of a 95% confidence interval for the slope
* estimate.
* <p>
* The 95% confidence interval is</p>
* <p>
* <code>(getSlope() - getSlopeConfidenceInterval(),
* getSlope() + getSlopeConfidenceInterval())</code></p>
* <p>
* If there are fewer that <strong>three</strong> observations in the
* model, or if there is no variation in x, this returns
* <code>Double.NaN</code>.</p>
* <p>* <strong>Usage Note</strong>:</p>
* <p>
* The validity of this statistic depends on the assumption that the
* observations included in the model are drawn from a
* <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
* Bivariate Normal Distribution</a>.</p>
*
* @return half-width of 95% confidence interval for the slope estimate
* @throws MathIllegalArgumentException if the confidence interval can not be computed.
*/
public double getSlopeConfidenceInterval() throws MathIllegalArgumentException {
return getSlopeConfidenceInterval(0.05d);
}
/**
* Returns the half-width of a (100-100*alpha)% confidence interval for
* the slope estimate.
* <p>
* The (100-100*alpha)% confidence interval is </p>
* <p>
* <code>(getSlope() - getSlopeConfidenceInterval(),
* getSlope() + getSlopeConfidenceInterval())</code></p>
* <p>
* To request, for example, a 99% confidence interval, use
* <code>alpha = .01</code></p>
* <p>
* <strong>Usage Note</strong>:<br>
* The validity of this statistic depends on the assumption that the
* observations included in the model are drawn from a
* <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
* Bivariate Normal Distribution</a>.</p>
* <p>
* <strong> Preconditions:</strong></p><ul>
* <li>If there are fewer that <strong>three</strong> observations in the
* model, or if there is no variation in x, this returns
* <code>Double.NaN</code>.
* </li>
* <li>{@code (0 < alpha < 1)}; otherwise an
* <code>MathIllegalArgumentException</code> is thrown.
* </li></ul>
*
* @param alpha the desired significance level
* @return half-width of 95% confidence interval for the slope estimate
* @throws MathIllegalArgumentException if the confidence interval can not be computed.
*/
public double getSlopeConfidenceInterval(final double alpha)
throws MathIllegalArgumentException {
if (n < 3) {
return Double.NaN;
}
if (alpha >= 1 || alpha <= 0) {
throw new MathIllegalArgumentException(LocalizedStatFormats.SIGNIFICANCE_LEVEL,
alpha, 0, 1);
}
// No advertised MathIllegalArgumentException here - will return NaN above
TDistribution distribution = new TDistribution(n - 2);
return getSlopeStdErr() *
distribution.inverseCumulativeProbability(1d - alpha / 2d);
}
/**
* Returns the significance level of the slope (equiv) correlation.
* <p>
* Specifically, the returned value is the smallest <code>alpha</code>
* such that the slope confidence interval with significance level
* equal to <code>alpha</code> does not include <code>0</code>.
* On regression output, this is often denoted <code>Prob(|t| > 0)</code>
* </p><p>
* <strong>Usage Note</strong>:<br>
* The validity of this statistic depends on the assumption that the
* observations included in the model are drawn from a
* <a href="http://mathworld.wolfram.com/BivariateNormalDistribution.html">
* Bivariate Normal Distribution</a>.</p>
* <p>
* If there are fewer that <strong>three</strong> observations in the
* model, or if there is no variation in x, this returns
* <code>Double.NaN</code>.</p>
*
* @return significance level for slope/correlation
* @throws org.hipparchus.exception.MathIllegalStateException
* if the significance level can not be computed.
*/
public double getSignificance() {
if (n < 3) {
return Double.NaN;
}
// No advertised MathIllegalArgumentException here - will return NaN above
TDistribution distribution = new TDistribution(n - 2);
return 2d * (1.0 - distribution.cumulativeProbability(
FastMath.abs(getSlope()) / getSlopeStdErr()));
}
// ---------------------Private methods-----------------------------------
/**
* Returns the intercept of the estimated regression line, given the slope.
* <p>
* Will return <code>NaN</code> if slope is <code>NaN</code>.</p>
*
* @param slope current slope
* @return the intercept of the regression line
*/
private double getIntercept(final double slope) {
if( hasIntercept){
return (sumY - slope * sumX) / n;
}
return 0.0;
}
/**
* Computes SSR from b1.
*
* @param slope regression slope estimate
* @return sum of squared deviations of predicted y values
*/
private double getRegressionSumSquares(final double slope) {
return slope * slope * sumXX;
}
/**
* Performs a regression on data present in buffers and outputs a RegressionResults object.
*
* <p>If there are fewer than 3 observations in the model and {@code hasIntercept} is true
* a {@code MathIllegalArgumentException} is thrown. If there is no intercept term, the model must
* contain at least 2 observations.</p>
*
* @return RegressionResults acts as a container of regression output
* @throws MathIllegalArgumentException if the model is not correctly specified
* @throws MathIllegalArgumentException if there is not sufficient data in the model to
* estimate the regression parameters
*/
@Override
public RegressionResults regress() throws MathIllegalArgumentException {
if (hasIntercept) {
if (n < 3) {
throw new MathIllegalArgumentException(LocalizedStatFormats.NOT_ENOUGH_DATA_REGRESSION);
}
if (FastMath.abs(sumXX) > Precision.SAFE_MIN) {
final double[] params = { getIntercept(), getSlope() };
final double mse = getMeanSquareError();
final double _syy = sumYY + sumY * sumY / n;
final double[] vcv = { mse * (xbar * xbar / sumXX + 1.0 / n), -xbar * mse / sumXX, mse / sumXX };
return new RegressionResults(params, new double[][] { vcv }, true, n, 2, sumY, _syy, getSumSquaredErrors(), true,
false);
} else {
final double[] params = { sumY / n, Double.NaN };
// final double mse = getMeanSquareError();
final double[] vcv = { ybar / (n - 1.0), Double.NaN, Double.NaN };
return new RegressionResults(params, new double[][] { vcv }, true, n, 1, sumY, sumYY, getSumSquaredErrors(), true,
false);
}
} else {
if (n < 2) {
throw new MathIllegalArgumentException(LocalizedStatFormats.NOT_ENOUGH_DATA_REGRESSION);
}
if (!Double.isNaN(sumXX)) {
final double[] vcv = { getMeanSquareError() / sumXX };
final double[] params = { sumXY / sumXX };
return new RegressionResults(params, new double[][] { vcv }, true, n, 1, sumY, sumYY, getSumSquaredErrors(), false,
false);
} else {
final double[] vcv = { Double.NaN };
final double[] params = { Double.NaN };
return new RegressionResults(params, new double[][] { vcv }, true, n, 1, Double.NaN, Double.NaN, Double.NaN, false,
false);
}
}
}
/**
* Performs a regression on data present in buffers including only regressors
* indexed in variablesToInclude and outputs a RegressionResults object
* @param variablesToInclude an array of indices of regressors to include
* @return RegressionResults acts as a container of regression output
* @throws MathIllegalArgumentException if the variablesToInclude array is null or zero length
* @throws MathIllegalArgumentException if a requested variable is not present in model
*/
@Override
public RegressionResults regress(int[] variablesToInclude) throws MathIllegalArgumentException {
if (variablesToInclude == null || variablesToInclude.length == 0) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.ARRAY_ZERO_LENGTH_OR_NULL_NOT_ALLOWED);
}
if (variablesToInclude.length > 2 || (variablesToInclude.length > 1 && !hasIntercept)) {
throw new MathIllegalArgumentException(
LocalizedCoreFormats.ARRAY_SIZE_EXCEEDS_MAX_VARIABLES,
(variablesToInclude.length > 1 && !hasIntercept) ? 1 : 2);
}
if (hasIntercept) {
if (variablesToInclude.length == 2) {
if (variablesToInclude[0] == 1) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.NOT_INCREASING_SEQUENCE);
} else if (variablesToInclude[0] != 0) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
variablesToInclude[0], 0, 1);
}
if (variablesToInclude[1] != 1) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
variablesToInclude[0], 0, 1);
}
return regress();
}else{
if( variablesToInclude[0] != 1 && variablesToInclude[0] != 0 ) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
variablesToInclude[0], 0, 1);
}
final double _mean = sumY * sumY / n;
final double _syy = sumYY + _mean;
if( variablesToInclude[0] == 0 ){
//just the mean
final double[] vcv = { sumYY/(((n-1)*n)) };
final double[] params = { ybar };
return new RegressionResults(
params, new double[][] {vcv}, true, n, 1,
sumY, _syy+_mean, sumYY,true,false);
}else if( variablesToInclude[0] == 1){
//final double _syy = sumYY + sumY * sumY / ((double) n);
final double _sxx = sumXX + sumX * sumX / n;
final double _sxy = sumXY + sumX * sumY / n;
final double _sse = FastMath.max(0d, _syy - _sxy * _sxy / _sxx);
final double _mse = _sse/((n-1));
if( !Double.isNaN(_sxx) ){
final double[] vcv = { _mse / _sxx };
final double[] params = { _sxy/_sxx };
return new RegressionResults(
params, new double[][] {vcv}, true, n, 1,
sumY, _syy, _sse,false,false);
}else{
final double[] vcv = {Double.NaN };
final double[] params = { Double.NaN };
return new RegressionResults(
params, new double[][] {vcv}, true, n, 1,
Double.NaN, Double.NaN, Double.NaN,false,false);
}
}
}
} else {
if (variablesToInclude[0] != 0) {
throw new MathIllegalArgumentException(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE,
variablesToInclude[0], 0, 0);
}
return regress();
}
return null;
}
}