Serialized Form
-
Package org.hipparchus.stat
-
Class org.hipparchus.stat.Frequency
class Frequency extends Object implements Serializable- serialVersionUID:
- 20160322L
-
Serialized Fields
-
freqTable
NavigableMap<T extends Comparable<T>,
Long> freqTable underlying collection
-
-
Class org.hipparchus.stat.LongFrequency
- serialVersionUID:
- 20160322L
-
-
Package org.hipparchus.stat.descriptive
-
Class org.hipparchus.stat.descriptive.DescriptiveStatistics
class DescriptiveStatistics extends Object implements Serializable- serialVersionUID:
- 20160411L
-
Serialized Fields
-
eDA
ResizableDoubleArray eDA
Stored data values. -
geometricMeanImpl
UnivariateStatistic geometricMeanImpl
Geometric mean statistic implementation. -
kurtosisImpl
UnivariateStatistic kurtosisImpl
Kurtosis statistic implementation. -
maxImpl
UnivariateStatistic maxImpl
Maximum statistic implementation. -
meanImpl
UnivariateStatistic meanImpl
Mean statistic implementation. -
minImpl
UnivariateStatistic minImpl
Minimum statistic implementation. -
percentileImpl
Percentile percentileImpl
Percentile statistic implementation. -
skewnessImpl
UnivariateStatistic skewnessImpl
Skewness statistic implementation. -
sumImpl
UnivariateStatistic sumImpl
Sum statistic implementation. -
sumOfSquaresImpl
UnivariateStatistic sumOfSquaresImpl
Sum of squares statistic implementation. -
varianceImpl
UnivariateStatistic varianceImpl
Variance statistic implementation. -
windowSize
int windowSize
holds the window size.
-
-
Class org.hipparchus.stat.descriptive.MultivariateSummaryStatistics
class MultivariateSummaryStatistics extends Object implements Serializable- serialVersionUID:
- 20160424L
-
Serialized Fields
-
covarianceImpl
VectorialCovariance covarianceImpl
Covariance statistic implementation -
geoMeanImpl
StorelessMultivariateStatistic geoMeanImpl
Geometric mean statistic implementation -
k
int k
Dimension of the data. -
maxImpl
StorelessMultivariateStatistic maxImpl
Maximum statistic implementation -
meanImpl
StorelessMultivariateStatistic meanImpl
Mean statistic implementation -
minImpl
StorelessMultivariateStatistic minImpl
Minimum statistic implementation -
n
long n
Count of values that have been added -
sumImpl
StorelessMultivariateStatistic sumImpl
Sum statistic implementation -
sumLogImpl
StorelessMultivariateStatistic sumLogImpl
Sum of log statistic implementation -
sumSqImpl
StorelessMultivariateStatistic sumSqImpl
Sum of squares statistic implementation
-
-
Class org.hipparchus.stat.descriptive.StatisticalSummaryValues
class StatisticalSummaryValues extends Object implements Serializable- serialVersionUID:
- 20160406L
-
Serialized Fields
-
max
double max
The maximum value -
mean
double mean
The sample mean -
min
double min
The minimum value -
n
long n
The number of observations in the sample -
sum
double sum
The sum of the sample values -
variance
double variance
The sample variance
-
-
Class org.hipparchus.stat.descriptive.StreamingStatistics
class StreamingStatistics extends Object implements Serializable- serialVersionUID:
- 20160422L
-
Serialized Fields
-
computeExtrema
boolean computeExtrema
whether or not min and max are maintained -
computeMoments
boolean computeMoments
whether or not moment stats (sum, mean, variance) are maintained -
computeSumOfLogs
boolean computeSumOfLogs
whether or not sum of logs and geometric mean are maintained -
computeSumOfSquares
boolean computeSumOfSquares
whether or not sum of squares and quadratic mean are maintained -
geoMeanImpl
GeometricMean geoMeanImpl
geoMean of values that have been added -
maxImpl
Max maxImpl
max of values that have been added -
meanImpl
Mean meanImpl
mean of values that have been added -
minImpl
Min minImpl
min of values that have been added -
n
long n
count of values that have been added -
populationVariance
Variance populationVariance
population variance of values that have been added -
randomPercentile
RandomPercentile randomPercentile
source of percentiles -
secondMoment
SecondMoment secondMoment
SecondMoment is used to compute the mean and variance -
sumImpl
Sum sumImpl
sum of values that have been added -
sumOfLogsImpl
SumOfLogs sumOfLogsImpl
sumLog of values that have been added -
sumOfSquaresImpl
SumOfSquares sumOfSquaresImpl
sum of the square of each value that has been added -
varianceImpl
Variance varianceImpl
variance of values that have been added
-
-
-
Package org.hipparchus.stat.descriptive.moment
-
Class org.hipparchus.stat.descriptive.moment.GeometricMean
class GeometricMean extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
incSumOfLogs
boolean incSumOfLogs
Determines whether or not this statistic can be incremented or cleared.Statistics based on (constructed from) external statistics cannot be incremented or cleared.
-
sumOfLogs
SumOfLogs sumOfLogs
Wrapped SumOfLogs instance
-
-
Class org.hipparchus.stat.descriptive.moment.Kurtosis
class Kurtosis extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
incMoment
boolean incMoment
Determines whether or not this statistic can be incremented or cleared.Statistics based on (constructed from) external moments cannot be incremented or cleared.
-
moment
org.hipparchus.stat.descriptive.moment.FourthMoment moment
Fourth Moment on which this statistic is based
-
-
Class org.hipparchus.stat.descriptive.moment.Mean
class Mean extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
incMoment
boolean incMoment
Determines whether or not this statistic can be incremented or cleared.Statistics based on (constructed from) external moments cannot be incremented or cleared.
-
moment
org.hipparchus.stat.descriptive.moment.FirstMoment moment
First moment on which this statistic is based.
-
-
Class org.hipparchus.stat.descriptive.moment.SecondMoment
class SecondMoment extends org.hipparchus.stat.descriptive.moment.FirstMoment implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
m2
double m2
Second moment of values that have been added
-
-
Class org.hipparchus.stat.descriptive.moment.SemiVariance
class SemiVariance extends AbstractUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
biasCorrected
boolean biasCorrected
Determines whether or not bias correction is applied when computing the value of the statistic. True means that bias is corrected. -
varianceDirection
SemiVariance.Direction varianceDirection
Determines whether to calculate downside or upside SemiVariance.
-
-
Class org.hipparchus.stat.descriptive.moment.Skewness
class Skewness extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
incMoment
boolean incMoment
Determines whether or not this statistic can be incremented or cleared.Statistics based on (constructed from) external moments cannot be incremented or cleared.
-
moment
org.hipparchus.stat.descriptive.moment.ThirdMoment moment
Third moment on which this statistic is based
-
-
Class org.hipparchus.stat.descriptive.moment.StandardDeviation
class StandardDeviation extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
variance
Variance variance
Wrapped Variance instance
-
-
Class org.hipparchus.stat.descriptive.moment.Variance
class Variance extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
incMoment
boolean incMoment
Whether or notVariance.increment(double)
should increment the internal second moment. When a Variance is constructed with an external SecondMoment as a constructor parameter, this property is set to false and increments must be applied to the second moment directly. -
isBiasCorrected
boolean isBiasCorrected
Whether or not bias correction is applied when computing the value of the statistic. True means that bias is corrected. SeeVariance
for details on the formula. -
moment
SecondMoment moment
SecondMoment is used in incremental calculation of Variance
-
-
-
Package org.hipparchus.stat.descriptive.rank
-
Class org.hipparchus.stat.descriptive.rank.Max
class Max extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
long n
Number of values that have been added -
value
double value
Current value of the statistic
-
-
Class org.hipparchus.stat.descriptive.rank.Median
class Median extends AbstractUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
percentile
Percentile percentile
The percentile impl to calculate the median.
-
-
Class org.hipparchus.stat.descriptive.rank.Min
class Min extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
long n
Number of values that have been added -
value
double value
Current value of the statistic
-
-
Class org.hipparchus.stat.descriptive.rank.Percentile
class Percentile extends AbstractUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
cachedPivots
int[] cachedPivots
Cached pivots. -
estimationType
Percentile.EstimationType estimationType
Any of thePercentile.EstimationType
s such asCM
can be used. -
kthSelector
KthSelector kthSelector
Default KthSelector used with default pivoting strategy -
nanStrategy
NaNStrategy nanStrategy
NaN Handling of the input as defined byNaNStrategy
-
quantile
double quantile
Determines what percentile is computed when evaluate() is activated with no quantile argument.
-
-
Class org.hipparchus.stat.descriptive.rank.PSquarePercentile
class PSquarePercentile extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
countOfObservations
long countOfObservations
Counter to count the values/observations accepted into this data set -
initialFive
List<Double> initialFive
Initial list of 5 numbers corresponding to 5 markers. NOTE:watch out for the add methods that are overloaded -
markers
PSquarePercentile.PSquareMarkers markers
Markers is the marker collection object which comes to effect only after 5 values are inserted -
pValue
double pValue
Computed p value (i,e percentile value of data set hither to received) -
quantile
double quantile
The quantile needed should be in range of 0-1. The constructorPSquarePercentile(double)
ensures that passed in percentile is divided by 100.
-
-
Class org.hipparchus.stat.descriptive.rank.RandomPercentile
class RandomPercentile extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
bufferMap
org.hipparchus.stat.descriptive.rank.RandomPercentile.BufferMap bufferMap
Data structure used to manage buffers -
currentBuffer
org.hipparchus.stat.descriptive.rank.RandomPercentile.Buffer currentBuffer
Buffer currently being filled -
epsilon
double epsilon
Bound on the quantile estimation error -
h
int h
Maximum number of buffers minus 1 -
n
long n
Number of elements consumed from the input data stream -
randomGenerator
RandomGenerator randomGenerator
Source of random data -
s
int s
Storage size of each buffer
-
-
-
Package org.hipparchus.stat.descriptive.summary
-
Class org.hipparchus.stat.descriptive.summary.Product
class Product extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
long n
The number of values that have been added -
value
double value
The current Running Product
-
-
Class org.hipparchus.stat.descriptive.summary.Sum
class Sum extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
long n
The number of values that have been added -
value
double value
The currently running sum
-
-
Class org.hipparchus.stat.descriptive.summary.SumOfLogs
class SumOfLogs extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
int n
Number of values that have been added -
value
double value
The currently running value
-
-
Class org.hipparchus.stat.descriptive.summary.SumOfSquares
class SumOfSquares extends AbstractStorelessUnivariateStatistic implements Serializable- serialVersionUID:
- 20150412L
-
Serialized Fields
-
n
long n
Number of values that have been added -
value
double value
The currently running sumSq
-
-
-
Package org.hipparchus.stat.descriptive.vector
-
Class org.hipparchus.stat.descriptive.vector.VectorialCovariance
class VectorialCovariance extends Object implements Serializable- serialVersionUID:
- 4118372414238930270L
-
Serialized Fields
-
isBiasCorrected
boolean isBiasCorrected
Indicator for bias correction. -
n
long n
Number of vectors in the sample. -
productsSums
double[] productsSums
Sums of products for each component. -
sums
double[] sums
Sums for each component.
-
-
Class org.hipparchus.stat.descriptive.vector.VectorialStorelessStatistic
class VectorialStorelessStatistic extends Object implements Serializable- serialVersionUID:
- 20160413L
-
Serialized Fields
-
stats
StorelessUnivariateStatistic[] stats
Statistic for each component
-
-
-
Package org.hipparchus.stat.fitting
-
Class org.hipparchus.stat.fitting.EmpiricalDistribution
class EmpiricalDistribution extends AbstractRealDistribution implements Serializable- serialVersionUID:
- 5729073523949762654L
-
Serialized Fields
-
binCount
int binCount
number of bins -
binStats
List<StreamingStatistics> binStats
List of SummaryStatistics objects characterizing the bins -
delta
double delta
Grid size -
loaded
boolean loaded
is the distribution loaded? -
max
double max
Max loaded value -
min
double min
Min loaded value -
randomData
RandomDataGenerator randomData
RandomDataGenerator instance to use in repeated calls to getNext() -
sampleStats
StreamingStatistics sampleStats
Sample statistics -
upperBounds
double[] upperBounds
upper bounds of subintervals in (0,1) "belonging" to the bins
-
-
-
Package org.hipparchus.stat.regression
-
Class org.hipparchus.stat.regression.RegressionResults
class RegressionResults extends Object implements Serializable- serialVersionUID:
- 1L
-
Serialized Fields
-
containsConstant
boolean containsConstant
boolean flag indicator of whether a constant was included -
globalFitInfo
double[] globalFitInfo
array storing global results, SSE, MSE, RSQ, adjRSQ -
isSymmetricVCD
boolean isSymmetricVCD
boolean flag for variance covariance matrix in symm compressed storage -
nobs
long nobs
number of observations on which results are based -
parameters
double[] parameters
regression slope parameters -
rank
int rank
rank of the solution -
varCovData
double[][] varCovData
variance covariance matrix of parameters
-
-
Class org.hipparchus.stat.regression.SimpleRegression
class SimpleRegression extends Object implements Serializable- serialVersionUID:
- -3004689053607543335L
-
Serialized Fields
-
hasIntercept
boolean hasIntercept
include an intercept or not -
n
long n
number of observations -
sumX
double sumX
sum of x values -
sumXX
double sumXX
total variation in x (sum of squared deviations from xbar) -
sumXY
double sumXY
sum of products -
sumY
double sumY
sum of y values -
sumYY
double sumYY
total variation in y (sum of squared deviations from ybar) -
xbar
double xbar
mean of accumulated x values, used in updating formulas -
ybar
double ybar
mean of accumulated y values, used in updating formulas
-
-