OptimumImpl.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.optim.nonlinear.vector.leastsquares;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresOptimizer.Optimum;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
/**
* A pedantic implementation of {@link Optimum}.
*
*/
class OptimumImpl implements Optimum {
/** abscissa and ordinate */
private final Evaluation value;
/** number of evaluations to compute this optimum */
private final int evaluations;
/** number of iterations to compute this optimum */
private final int iterations;
/**
* Construct an optimum from an evaluation and the values of the counters.
*
* @param value the function value
* @param evaluations number of times the function was evaluated
* @param iterations number of iterations of the algorithm
*/
OptimumImpl(final Evaluation value, final int evaluations, final int iterations) {
this.value = value;
this.evaluations = evaluations;
this.iterations = iterations;
}
/* auto-generated implementations */
/** {@inheritDoc} */
@Override
public int getEvaluations() {
return evaluations;
}
/** {@inheritDoc} */
@Override
public int getIterations() {
return iterations;
}
/** {@inheritDoc} */
@Override
public RealMatrix getCovariances(double threshold) {
return value.getCovariances(threshold);
}
/** {@inheritDoc} */
@Override
public RealVector getSigma(double covarianceSingularityThreshold) {
return value.getSigma(covarianceSingularityThreshold);
}
/** {@inheritDoc} */
@Override
public double getRMS() {
return value.getRMS();
}
/** {@inheritDoc} */
@Override
public RealMatrix getJacobian() {
return value.getJacobian();
}
/** {@inheritDoc} */
@Override
public double getCost() {
return value.getCost();
}
/** {@inheritDoc} */
@Override
public double getChiSquare() {
return value.getChiSquare();
}
/** {@inheritDoc} */
@Override
public double getReducedChiSquare(int n) {
return value.getReducedChiSquare(n);
}
/** {@inheritDoc} */
@Override
public RealVector getResiduals() {
return value.getResiduals();
}
/** {@inheritDoc} */
@Override
public RealVector getPoint() {
return value.getPoint();
}
}