GaussNewtonOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.vector.leastsquares;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.linear.ArrayRealVector;
- import org.hipparchus.linear.MatrixDecomposer;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.QRDecomposer;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.linear.RealVector;
- import org.hipparchus.optim.ConvergenceChecker;
- import org.hipparchus.optim.LocalizedOptimFormats;
- import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
- import org.hipparchus.util.Incrementor;
- import org.hipparchus.util.Pair;
- /**
- * Gauss-Newton least-squares solver.
- * <p>
- * This class solve a least-square problem by solving the normal equations
- * of the linearized problem at each iteration. Either LU decomposition or
- * Cholesky decomposition can be used to solve the normal equations, or QR
- * decomposition or SVD decomposition can be used to solve the linear system.
- * Cholesky/LU decomposition is faster but QR decomposition is more robust for difficult
- * problems, and SVD can compute a solution for rank-deficient problems.
- */
- public class GaussNewtonOptimizer implements LeastSquaresOptimizer {
- /**
- * The singularity threshold for matrix decompositions. Determines when a {@link
- * MathIllegalStateException} is thrown. The current value was the default value for {@link
- * org.hipparchus.linear.LUDecomposition}.
- */
- private static final double SINGULARITY_THRESHOLD = 1e-11;
- /** Decomposer */
- private final MatrixDecomposer decomposer;
- /** Indicates if normal equations should be formed explicitly. */
- private final boolean formNormalEquations;
- /**
- * Creates a Gauss Newton optimizer.
- * <p>
- * The default for the algorithm is to use QR decomposition and not
- * form normal equations.
- * </p>
- */
- public GaussNewtonOptimizer() {
- this(new QRDecomposer(SINGULARITY_THRESHOLD), false);
- }
- /**
- * Create a Gauss Newton optimizer that uses the given matrix decomposition algorithm
- * to solve the normal equations.
- *
- * @param decomposer the decomposition algorithm to use.
- * @param formNormalEquations whether the normal equations should be explicitly
- * formed. If {@code true} then {@code decomposer} is used
- * to solve J<sup>T</sup>Jx=J<sup>T</sup>r, otherwise
- * {@code decomposer} is used to solve Jx=r. If {@code
- * decomposer} can only solve square systems then this
- * parameter should be {@code true}.
- */
- public GaussNewtonOptimizer(final MatrixDecomposer decomposer,
- final boolean formNormalEquations) {
- this.decomposer = decomposer;
- this.formNormalEquations = formNormalEquations;
- }
- /**
- * Get the matrix decomposition algorithm.
- *
- * @return the decomposition algorithm.
- */
- public MatrixDecomposer getDecomposer() {
- return decomposer;
- }
- /**
- * Configure the matrix decomposition algorithm.
- *
- * @param newDecomposer the decomposition algorithm to use.
- * @return a new instance.
- */
- public GaussNewtonOptimizer withDecomposer(final MatrixDecomposer newDecomposer) {
- return new GaussNewtonOptimizer(newDecomposer, this.isFormNormalEquations());
- }
- /**
- * Get if the normal equations are explicitly formed.
- *
- * @return if the normal equations should be explicitly formed. If {@code true} then
- * {@code decomposer} is used to solve J<sup>T</sup>Jx=J<sup>T</sup>r, otherwise
- * {@code decomposer} is used to solve Jx=r.
- */
- public boolean isFormNormalEquations() {
- return formNormalEquations;
- }
- /**
- * Configure if the normal equations should be explicitly formed.
- *
- * @param newFormNormalEquations whether the normal equations should be explicitly
- * formed. If {@code true} then {@code decomposer} is used
- * to solve J<sup>T</sup>Jx=J<sup>T</sup>r, otherwise
- * {@code decomposer} is used to solve Jx=r. If {@code
- * decomposer} can only solve square systems then this
- * parameter should be {@code true}.
- * @return a new instance.
- */
- public GaussNewtonOptimizer withFormNormalEquations(final boolean newFormNormalEquations) {
- return new GaussNewtonOptimizer(this.getDecomposer(), newFormNormalEquations);
- }
- /** {@inheritDoc} */
- @Override
- public Optimum optimize(final LeastSquaresProblem lsp) {
- //create local evaluation and iteration counts
- final Incrementor evaluationCounter = lsp.getEvaluationCounter();
- final Incrementor iterationCounter = lsp.getIterationCounter();
- final ConvergenceChecker<Evaluation> checker
- = lsp.getConvergenceChecker();
- // Computation will be useless without a checker (see "for-loop").
- if (checker == null) {
- throw new NullArgumentException();
- }
- RealVector currentPoint = lsp.getStart();
- // iterate until convergence is reached
- Evaluation current = null;
- while (true) {
- iterationCounter.increment();
- // evaluate the objective function and its jacobian
- Evaluation previous = current;
- // Value of the objective function at "currentPoint".
- evaluationCounter.increment();
- current = lsp.evaluate(currentPoint);
- final RealVector currentResiduals = current.getResiduals();
- final RealMatrix weightedJacobian = current.getJacobian();
- currentPoint = current.getPoint();
- // Check convergence.
- if (previous != null &&
- checker.converged(iterationCounter.getCount(), previous, current)) {
- return Optimum.of(current,
- evaluationCounter.getCount(),
- iterationCounter.getCount());
- }
- // solve the linearized least squares problem
- final RealMatrix lhs; // left hand side
- final RealVector rhs; // right hand side
- if (this.formNormalEquations) {
- final Pair<RealMatrix, RealVector> normalEquation =
- computeNormalMatrix(weightedJacobian, currentResiduals);
- lhs = normalEquation.getFirst();
- rhs = normalEquation.getSecond();
- } else {
- lhs = weightedJacobian;
- rhs = currentResiduals;
- }
- final RealVector dX;
- try {
- dX = this.decomposer.decompose(lhs).solve(rhs);
- } catch (MathIllegalArgumentException e) {
- // change exception message
- throw new MathIllegalStateException(
- LocalizedOptimFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
- }
- // update the estimated parameters
- currentPoint = currentPoint.add(dX);
- }
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return "GaussNewtonOptimizer{" +
- "decomposer=" + decomposer +
- ", formNormalEquations=" + formNormalEquations +
- '}';
- }
- /**
- * Compute the normal matrix, J<sup>T</sup>J.
- *
- * @param jacobian the m by n jacobian matrix, J. Input.
- * @param residuals the m by 1 residual vector, r. Input.
- * @return the n by n normal matrix and the n by 1 J<sup>Tr vector.
- */
- private static Pair<RealMatrix, RealVector> computeNormalMatrix(final RealMatrix jacobian,
- final RealVector residuals) {
- //since the normal matrix is symmetric, we only need to compute half of it.
- final int nR = jacobian.getRowDimension();
- final int nC = jacobian.getColumnDimension();
- //allocate space for return values
- final RealMatrix normal = MatrixUtils.createRealMatrix(nC, nC);
- final RealVector jTr = new ArrayRealVector(nC);
- //for each measurement
- for (int i = 0; i < nR; ++i) {
- //compute JTr for measurement i
- for (int j = 0; j < nC; j++) {
- jTr.setEntry(j, jTr.getEntry(j) +
- residuals.getEntry(i) * jacobian.getEntry(i, j));
- }
- // add the the contribution to the normal matrix for measurement i
- for (int k = 0; k < nC; ++k) {
- //only compute the upper triangular part
- for (int l = k; l < nC; ++l) {
- normal.setEntry(k, l, normal.getEntry(k, l) +
- jacobian.getEntry(i, k) * jacobian.getEntry(i, l));
- }
- }
- }
- //copy the upper triangular part to the lower triangular part.
- for (int i = 0; i < nC; i++) {
- for (int j = 0; j < i; j++) {
- normal.setEntry(i, j, normal.getEntry(j, i));
- }
- }
- return new Pair<>(normal, jTr);
- }
- }