AbstractEvaluation.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.optim.nonlinear.vector.leastsquares;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.DecompositionSolver;
import org.hipparchus.linear.QRDecomposition;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation;
import org.hipparchus.util.FastMath;
/**
* An implementation of {@link Evaluation} that is designed for extension. All of the
* methods implemented here use the methods that are left unimplemented.
*/
public abstract class AbstractEvaluation implements Evaluation {
/** number of observations */
private final int observationSize;
/**
* Constructor.
*
* @param observationSize the number of observations.
* Needed for {@link #getRMS()} and {@link #getReducedChiSquare(int)}.
*/
public AbstractEvaluation(final int observationSize) {
this.observationSize = observationSize;
}
/** {@inheritDoc} */
@Override
public RealMatrix getCovariances(double threshold) {
// Set up the Jacobian.
final RealMatrix j = this.getJacobian();
// Compute transpose(J)J.
final RealMatrix jTj = j.transposeMultiply(j);
// Compute the covariances matrix.
final DecompositionSolver solver
= new QRDecomposition(jTj, threshold).getSolver();
return solver.getInverse();
}
/** {@inheritDoc} */
@Override
public RealVector getSigma(double covarianceSingularityThreshold) {
final RealMatrix cov = this.getCovariances(covarianceSingularityThreshold);
final int nC = cov.getColumnDimension();
final RealVector sig = new ArrayRealVector(nC);
for (int i = 0; i < nC; ++i) {
sig.setEntry(i, FastMath.sqrt(cov.getEntry(i,i)));
}
return sig;
}
/** {@inheritDoc} */
@Override
public double getRMS() {
return FastMath.sqrt(getReducedChiSquare(1));
}
/** {@inheritDoc} */
@Override
public double getCost() {
return FastMath.sqrt(getChiSquare());
}
/** {@inheritDoc} */
@Override
public double getChiSquare() {
final ArrayRealVector r = new ArrayRealVector(getResiduals());
return r.dotProduct(r);
}
/** {@inheritDoc} */
@Override
public double getReducedChiSquare(int numberOfFittedParameters) {
return getChiSquare() / (observationSize - numberOfFittedParameters + 1);
}
}