VectorDifferentiableFunction.java

  1. /*
  2.  * Licensed to the Hipparchus project under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.hipparchus.optim.nonlinear.vector.constrained;



  18. import org.hipparchus.analysis.MultivariateVectorFunction;
  19. import org.hipparchus.linear.ArrayRealVector;
  20. import org.hipparchus.linear.RealMatrix;
  21. import org.hipparchus.linear.RealVector;

  22. /** A MultivariateFunction that also has a defined gradient and Hessian.
  23.  * @since 3.1
  24.  */
  25. public interface VectorDifferentiableFunction extends MultivariateVectorFunction {

  26.     /**
  27.      * Returns the dimensionality of the function domain.
  28.      * If dim() returns (n) then this function expects an n-vector as its input.
  29.      * @return the expected dimension of the function's domain
  30.      */
  31.     int dim();

  32.      /**
  33.      * Returns the dimensionality of the function eval.
  34.      *
  35.      * @return the expected dimension of the function's eval
  36.      */
  37.     int dimY();

  38.     /**
  39.      * Returns the value of this function at (x)
  40.      *
  41.      * @param x a point to evaluate this function at.
  42.      * @return the value of this function at (x)
  43.      */
  44.     RealVector value(RealVector x);

  45.     /**
  46.      * Returns the value of this function at (x)
  47.      *
  48.      * @param x a point to evaluate this function at.
  49.      * @return the value of this function at (x)
  50.      */
  51.     @Override
  52.     default double[] value(final double[] x) {
  53.         return value(new ArrayRealVector(x, false)).toArray();
  54.     }

  55.     /**
  56.      * Returns the gradient of this function at (x)
  57.      *
  58.      * @param x a point to evaluate this gradient at
  59.      * @return the gradient of this function at (x)
  60.      */
  61.     RealMatrix jacobian(RealVector x);

  62.     /**
  63.      * Returns the gradient of this function at (x)
  64.      *
  65.      * @param x a point to evaluate this gradient at
  66.      * @return the gradient of this function at (x)
  67.      */
  68.     default RealMatrix gradient(final double[] x) {
  69.         return jacobian(new ArrayRealVector(x, false));
  70.     }

  71. }