VectorDifferentiableFunction.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.optim.nonlinear.vector.constrained;
import org.hipparchus.analysis.MultivariateVectorFunction;
import org.hipparchus.linear.ArrayRealVector;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
/** A MultivariateFunction that also has a defined gradient and Hessian.
* @since 3.1
*/
public interface VectorDifferentiableFunction extends MultivariateVectorFunction {
/**
* Returns the dimensionality of the function domain.
* If dim() returns (n) then this function expects an n-vector as its input.
* @return the expected dimension of the function's domain
*/
int dim();
/**
* Returns the dimensionality of the function eval.
*
* @return the expected dimension of the function's eval
*/
int dimY();
/**
* Returns the value of this function at (x)
*
* @param x a point to evaluate this function at.
* @return the value of this function at (x)
*/
RealVector value(RealVector x);
/**
* Returns the value of this function at (x)
*
* @param x a point to evaluate this function at.
* @return the value of this function at (x)
*/
@Override
default double[] value(final double[] x) {
return value(new ArrayRealVector(x, false)).toArray();
}
/**
* Returns the gradient of this function at (x)
*
* @param x a point to evaluate this gradient at
* @return the gradient of this function at (x)
*/
RealMatrix jacobian(RealVector x);
/**
* Returns the gradient of this function at (x)
*
* @param x a point to evaluate this gradient at
* @return the gradient of this function at (x)
*/
default RealMatrix gradient(final double[] x) {
return jacobian(new ArrayRealVector(x, false));
}
}