TwiceDifferentiableFunction.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.optim.nonlinear.vector.constrained;
- import org.hipparchus.analysis.MultivariateFunction;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.linear.RealVector;
- import org.hipparchus.linear.ArrayRealVector;
- /** A MultivariateFunction that also has a defined gradient and Hessian.
- * @since 3.1
- */
- public abstract class TwiceDifferentiableFunction implements MultivariateFunction {
- /**
- * Returns the dimensionality of the function domain.
- * If dim() returns (n) then this function expects an n-vector as its input.
- * @return the expected dimension of the function's domain
- */
- public abstract int dim();
- /**
- * Returns the value of this function at (x)
- *
- * @param x a point to evaluate this function at.
- * @return the value of this function at (x)
- */
- public abstract double value(RealVector x);
- /**
- * Returns the gradient of this function at (x)
- *
- * @param x a point to evaluate this gradient at
- * @return the gradient of this function at (x)
- */
- public abstract RealVector gradient(RealVector x);
- /**
- * The Hessian of this function at (x)
- *
- * @param x a point to evaluate this Hessian at
- * @return the Hessian of this function at (x)
- */
- public abstract RealMatrix hessian(RealVector x);
- /**
- * Returns the value of this function at (x)
- *
- * @param x a point to evaluate this function at.
- * @return the value of this function at (x)
- */
- @Override
- public double value(final double[] x) {
- return value(new ArrayRealVector(x, false));
- }
- /**
- * Returns the gradient of this function at (x)
- *
- * @param x a point to evaluate this gradient at
- * @return the gradient of this function at (x)
- */
- public RealVector gradient(final double[] x) {
- return gradient(new ArrayRealVector(x, false));
- }
- /**
- * The Hessian of this function at (x)
- *
- * @param x a point to evaluate this Hessian at
- * @return the Hessian of this function at (x)
- */
- public RealMatrix hessian(final double[] x) {
- return hessian(new ArrayRealVector(x, false));
- }
- }