AbstractSQPOptimizer.java

  1. /*
  2.  * Licensed to the Hipparchus project under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      https://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.hipparchus.optim.nonlinear.vector.constrained;

  18. import org.hipparchus.exception.LocalizedCoreFormats;
  19. import org.hipparchus.exception.MathIllegalArgumentException;
  20. import org.hipparchus.linear.RealMatrix;
  21. import org.hipparchus.linear.RealVector;
  22. import org.hipparchus.optim.LocalizedOptimFormats;
  23. import org.hipparchus.optim.OptimizationData;
  24. import org.hipparchus.optim.nonlinear.scalar.ObjectiveFunction;
  25. import org.hipparchus.util.MathUtils;

  26. /**
  27.  * Abstract class for Sequential Quadratic Programming solvers
  28.  * @since 3.1
  29.  */
  30. public abstract class AbstractSQPOptimizer extends ConstraintOptimizer {

  31.     /** Algorithm settings. */
  32.     private SQPOption settings;

  33.     /** Objective function. */
  34.     private TwiceDifferentiableFunction obj;

  35.     /** Equality constraint (may be null). */
  36.     private EqualityConstraint eqConstraint;

  37.     /** Inequality constraint (may be null). */
  38.     private InequalityConstraint iqConstraint;

  39.     /** Simple constructor.
  40.      */
  41.     protected AbstractSQPOptimizer() {
  42.         this.settings = new SQPOption();
  43.     }

  44.     /** Getter for settings.
  45.      * @return settings
  46.      */
  47.     public SQPOption getSettings() {
  48.         return settings;
  49.     }

  50.     /** Getter for objective function.
  51.      * @return objective function
  52.      */
  53.     public TwiceDifferentiableFunction getObj() {
  54.         return obj;
  55.     }

  56.     /** Getter for equality constraint.
  57.      * @return equality constraint
  58.      */
  59.     public EqualityConstraint getEqConstraint() {
  60.         return eqConstraint;
  61.     }

  62.     /** Getter for inequality constraint.
  63.      * @return inequality constraint
  64.      */
  65.     public InequalityConstraint getIqConstraint() {
  66.         return iqConstraint;
  67.     }

  68.     @Override
  69.     public LagrangeSolution optimize(OptimizationData... optData) {
  70.         return super.optimize(optData);
  71.     }

  72.     @Override
  73.     protected void parseOptimizationData(OptimizationData... optData) {
  74.         super.parseOptimizationData(optData);
  75.         for (OptimizationData data : optData) {

  76.             if (data instanceof ObjectiveFunction) {
  77.                 obj = (TwiceDifferentiableFunction) ((ObjectiveFunction) data).getObjectiveFunction();
  78.                 continue;
  79.             }

  80.             if (data instanceof EqualityConstraint) {
  81.                 eqConstraint = (EqualityConstraint) data;
  82.                 continue;
  83.             }
  84.             if (data instanceof InequalityConstraint) {
  85.                 iqConstraint = (InequalityConstraint) data;
  86.                 continue;
  87.             }

  88.             if (data instanceof SQPOption) {
  89.                 settings = (SQPOption) data;
  90.             }

  91.         }

  92.         // if we got here, convexObjective exists
  93.         int n = obj.dim();
  94.         if (eqConstraint != null) {
  95.             int nDual = eqConstraint.dimY();
  96.             if (nDual >= n) {
  97.                 throw new MathIllegalArgumentException(LocalizedOptimFormats.CONSTRAINTS_RANK, nDual, n);
  98.             }
  99.             int nTest = eqConstraint.dim();
  100.             if (nDual == 0) {
  101.                 throw new MathIllegalArgumentException(LocalizedCoreFormats.ZERO_NOT_ALLOWED);
  102.             }
  103.             MathUtils.checkDimension(nTest, n);
  104.         }

  105.     }

  106.     /**
  107.      * Compute Lagrangian gradient for variable X
  108.      *
  109.      * @param currentGrad current gradient
  110.      * @param jacobConstraint Jacobian
  111.      * @param x value of x
  112.      * @param y value of y
  113.      * @return Lagrangian
  114.      */
  115.     protected RealVector lagrangianGradX(final RealVector currentGrad, final RealMatrix jacobConstraint,
  116.                                          final RealVector x, final RealVector y) {

  117.         int me = 0;
  118.         int mi;
  119.         RealVector partial = currentGrad.copy();
  120.         if (getEqConstraint() != null) {
  121.             me = getEqConstraint().dimY();

  122.             RealVector ye = y.getSubVector(0, me);
  123.             RealMatrix jacobe = jacobConstraint.getSubMatrix(0, me - 1, 0, x.getDimension() - 1);

  124.             RealVector firstTerm = jacobe.transpose().operate(ye);

  125.             // partial = partial.subtract(firstTerm).add(jacobe.transpose().operate(ge).mapMultiply(rho));
  126.             partial = partial.subtract(firstTerm);
  127.         }

  128.         if (getIqConstraint() != null) {
  129.             mi = getIqConstraint().dimY();

  130.             RealVector yi = y.getSubVector(me, mi);
  131.             RealMatrix jacobi = jacobConstraint.getSubMatrix(me, me + mi - 1, 0, x.getDimension() - 1);

  132.             RealVector firstTerm = jacobi.transpose().operate(yi);

  133.             partial = partial.subtract(firstTerm);
  134.         }
  135.         return partial;
  136.     }

  137. }