ADMMQPConvergenceChecker.java
/*
* Licensed to the Hipparchus project under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The Hipparchus project licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.hipparchus.optim.nonlinear.vector.constrained;
import org.hipparchus.linear.RealMatrix;
import org.hipparchus.linear.RealVector;
import org.hipparchus.optim.ConvergenceChecker;
import org.hipparchus.optim.OptimizationData;
import org.hipparchus.util.FastMath;
/** Convergence Checker for ADMM QP Optimizer.
* @since 3.1
*/
public class ADMMQPConvergenceChecker implements ConvergenceChecker<LagrangeSolution>, OptimizationData {
/** Quadratic term matrix. */
private final RealMatrix h;
/** Constraint coefficients matrix. */
private final RealMatrix a;
/** Linear term matrix. */
private final RealVector q;
/** Absolute tolerance for convergence. */
private final double epsAbs;
/** Relative tolerance for convergence. */
private final double epsRel;
/** Convergence indicator. */
private boolean converged;
/** Simple constructor.
* @param h quadratic term matrix
* @param a constraint coefficients matrix
* @param q linear term matrix
* @param epsAbs
* @param epsRel
*/
ADMMQPConvergenceChecker(final RealMatrix h, final RealMatrix a, final RealVector q,
final double epsAbs, final double epsRel) {
this.h = h;
this.a = a;
this.q = q;
this.epsAbs = epsAbs;
this.epsRel = epsRel;
this.converged = false;
}
/** {@inheritDoc} */
@Override
public boolean converged(final int i, final LagrangeSolution previous, final LagrangeSolution current) {
return converged;
}
/** Evaluate convergence.
* @param rp primal residual
* @param rd dual residual
* @param maxPrimal primal vectors max
* @param maxDual dual vectors max
* @return true of convergence has been reached
*/
public boolean converged(final double rp, final double rd, final double maxPrimal, final double maxDual) {
boolean result = false;
if (rp <= epsPrimalDual(maxPrimal) && rd <= epsPrimalDual(maxDual)) {
result = true;
converged = true;
}
return result;
}
/** Compute primal residual.
* @param x primal problem solution
* @param z auxiliary variable
* @return primal residual
*/
public double residualPrime(final RealVector x, final RealVector z) {
return a.operate(x).subtract(z).getLInfNorm();
}
/** Compute dual residual.
* @param x primal problem solution
* @param y dual problem solution
* @return dual residual
*/
public double residualDual(final RealVector x, final RealVector y) {
return q.add(a.transpose().operate(y)).add(h.operate(x)).getLInfNorm();
}
/** Compute primal vectors max.
* @param x primal problem solution
* @param z auxiliary variable
* @return primal vectors max
*/
public double maxPrimal(final RealVector x, final RealVector z) {
return FastMath.max(a.operate(x).getLInfNorm(), z.getLInfNorm());
}
/** Compute dual vectors max.
* @param x primal problem solution
* @param y dual problem solution
* @return dual vectors max
*/
public double maxDual(final RealVector x, final RealVector y) {
return FastMath.max(FastMath.max(h.operate(x).getLInfNorm(),
a.transpose().operate(y).getLInfNorm()),
q.getLInfNorm());
}
/** Combine absolute and relative tolerances.
* @param maxPrimalDual either {@link #maxPrimal(RealVector, RealVector)}
* or {@link #maxDual(RealVector, RealVector)}
* @return global tolerance
*/
private double epsPrimalDual(final double maxPrimalDual) {
return epsAbs + epsRel * maxPrimalDual;
}
}