SimplexOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.scalar.noderiv;
- import java.util.Comparator;
- import org.hipparchus.analysis.MultivariateFunction;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.optim.ConvergenceChecker;
- import org.hipparchus.optim.OptimizationData;
- import org.hipparchus.optim.PointValuePair;
- import org.hipparchus.optim.SimpleValueChecker;
- import org.hipparchus.optim.nonlinear.scalar.GoalType;
- import org.hipparchus.optim.nonlinear.scalar.MultivariateOptimizer;
- /**
- * This class implements simplex-based direct search optimization.
- *
- * <p>
- * Direct search methods only use objective function values, they do
- * not need derivatives and don't either try to compute approximation
- * of the derivatives. According to a 1996 paper by Margaret H. Wright
- * (<a href="http://cm.bell-labs.com/cm/cs/doc/96/4-02.ps.gz">Direct
- * Search Methods: Once Scorned, Now Respectable</a>), they are used
- * when either the computation of the derivative is impossible (noisy
- * functions, unpredictable discontinuities) or difficult (complexity,
- * computation cost). In the first cases, rather than an optimum, a
- * <em>not too bad</em> point is desired. In the latter cases, an
- * optimum is desired but cannot be reasonably found. In all cases
- * direct search methods can be useful.
- * </p>
- * <p>
- * Simplex-based direct search methods are based on comparison of
- * the objective function values at the vertices of a simplex (which is a
- * set of n+1 points in dimension n) that is updated by the algorithms
- * steps.
- * </p>
- * <p>
- * The simplex update procedure ({@link NelderMeadSimplex} or
- * {@link MultiDirectionalSimplex}) must be passed to the
- * {@code optimize} method.
- * </p>
- * <p>
- * Each call to {@code optimize} will re-use the start configuration of
- * the current simplex and move it such that its first vertex is at the
- * provided start point of the optimization.
- * If the {@code optimize} method is called to solve a different problem
- * and the number of parameters change, the simplex must be re-initialized
- * to one with the appropriate dimensions.
- * </p>
- * <p>
- * Convergence is checked by providing the <em>worst</em> points of
- * previous and current simplex to the convergence checker, not the best
- * ones.
- * </p>
- * <p>
- * This simplex optimizer implementation does not directly support constrained
- * optimization with simple bounds; so, for such optimizations, either a more
- * dedicated algorithm must be used like
- * {@link CMAESOptimizer} or {@link BOBYQAOptimizer}, or the objective
- * function must be wrapped in an adapter like
- * {@link org.hipparchus.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
- * MultivariateFunctionMappingAdapter} or
- * {@link org.hipparchus.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
- * MultivariateFunctionPenaltyAdapter}.
- * <br>
- * The call to {@link #optimize(OptimizationData[]) optimize} will throw
- * {@link MathRuntimeException} if bounds are passed to it.
- * </p>
- *
- */
- public class SimplexOptimizer extends MultivariateOptimizer {
- /** Simplex update rule. */
- private AbstractSimplex simplex;
- /** Simple constructor.
- * @param checker Convergence checker.
- */
- public SimplexOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /** Simple constructor.
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- */
- public SimplexOptimizer(double rel, double abs) {
- this(new SimpleValueChecker(rel, abs));
- }
- /**
- * {@inheritDoc}
- *
- * @param optData Optimization data. In addition to those documented in
- * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
- * MultivariateOptimizer}, this method will register the following data:
- * <ul>
- * <li>{@link AbstractSimplex}</li>
- * </ul>
- * @return {@inheritDoc}
- */
- @Override
- public PointValuePair optimize(OptimizationData... optData) {
- // Set up base class and perform computation.
- return super.optimize(optData);
- }
- /** {@inheritDoc} */
- @Override
- protected PointValuePair doOptimize() {
- checkParameters();
- // Indirect call to "computeObjectiveValue" in order to update the
- // evaluations counter.
- final MultivariateFunction evalFunc
- = new MultivariateFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(double[] point) {
- return computeObjectiveValue(point);
- }
- };
- final boolean isMinim = getGoalType() == GoalType.MINIMIZE;
- final Comparator<PointValuePair> comparator
- = new Comparator<PointValuePair>() {
- /** {@inheritDoc} */
- @Override
- public int compare(final PointValuePair o1,
- final PointValuePair o2) {
- final double v1 = o1.getValue();
- final double v2 = o2.getValue();
- return isMinim ? Double.compare(v1, v2) : Double.compare(v2, v1);
- }
- };
- // Initialize search.
- simplex.build(getStartPoint());
- simplex.evaluate(evalFunc, comparator);
- PointValuePair[] previous = null;
- int iteration = 0;
- final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
- while (true) {
- if (getIterations() > 0) {
- boolean converged = true;
- for (int i = 0; i < simplex.getSize(); i++) {
- PointValuePair prev = previous[i];
- converged = converged &&
- checker.converged(iteration, prev, simplex.getPoint(i));
- }
- if (converged) {
- // We have found an optimum.
- return simplex.getPoint(0);
- }
- }
- // We still need to search.
- previous = simplex.getPoints();
- simplex.iterate(evalFunc, comparator);
- incrementIterationCount();
- }
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- *
- * @param optData Optimization data.
- * The following data will be looked for:
- * <ul>
- * <li>{@link AbstractSimplex}</li>
- * </ul>
- */
- @Override
- protected void parseOptimizationData(OptimizationData... optData) {
- // Allow base class to register its own data.
- super.parseOptimizationData(optData);
- // The existing values (as set by the previous call) are reused if
- // not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof AbstractSimplex) {
- simplex = (AbstractSimplex) data;
- // If more data must be parsed, this statement _must_ be
- // changed to "continue".
- break;
- }
- }
- }
- /**
- * @throws MathRuntimeException if bounds were passed to the
- * {@link #optimize(OptimizationData[]) optimize} method.
- * @throws NullArgumentException if no initial simplex was passed to the
- * {@link #optimize(OptimizationData[]) optimize} method.
- */
- private void checkParameters() {
- if (simplex == null) {
- throw new NullArgumentException();
- }
- if (getLowerBound() != null ||
- getUpperBound() != null) {
- throw new MathRuntimeException(LocalizedCoreFormats.CONSTRAINT);
- }
- }
- }