AdaptiveStepsizeFieldIntegrator |   | 87% |   | 76% | 8 | 24 | 9 | 62 | 3 | 11 | 0 | 1 |
GraggBulirschStoerIntegrator |   | 98% |   | 91% | 19 | 124 | 6 | 298 | 0 | 11 | 0 | 1 |
StepsizeHelper |   | 94% |   | 94% | 2 | 33 | 2 | 64 | 0 | 14 | 0 | 1 |
FieldExplicitRungeKuttaIntegrator |   | 95% |  | 96% | 2 | 26 | 3 | 68 | 1 | 11 | 0 | 1 |
AdaptiveStepsizeIntegrator |   | 93% |   | 88% | 4 | 24 | 4 | 62 | 1 | 11 | 0 | 1 |
AdamsFieldIntegrator |  | 97% |   | 92% | 3 | 25 | 0 | 83 | 0 | 6 | 0 | 1 |
AdamsIntegrator |  | 97% |   | 92% | 3 | 25 | 0 | 79 | 0 | 6 | 0 | 1 |
EmbeddedRungeKuttaFieldIntegrator |  | 98% |  | 100% | 3 | 33 | 3 | 105 | 3 | 13 | 0 | 1 |
EmbeddedRungeKuttaIntegrator |  | 98% |  | 100% | 3 | 28 | 3 | 88 | 3 | 9 | 0 | 1 |
FixedStepRungeKuttaFieldIntegrator |  | 97% |  | 95% | 1 | 19 | 1 | 60 | 0 | 7 | 0 | 1 |
FixedStepRungeKuttaIntegrator |  | 97% |  | 96% | 1 | 16 | 1 | 52 | 0 | 3 | 0 | 1 |
DormandPrince853FieldIntegrator |  | 100% |  | 100% | 0 | 11 | 0 | 188 | 0 | 8 | 0 | 1 |
DormandPrince853Integrator |  | 100% |  | 100% | 0 | 10 | 0 | 26 | 0 | 8 | 0 | 1 |
AdamsNordsieckFieldTransformer |  | 100% |  | 100% | 0 | 23 | 0 | 72 | 0 | 8 | 0 | 1 |
DormandPrince54FieldIntegrator |  | 100% |  | 100% | 0 | 10 | 0 | 58 | 0 | 8 | 0 | 1 |
HighamHall54FieldIntegrator |  | 100% |  | 100% | 0 | 11 | 0 | 58 | 0 | 8 | 0 | 1 |
AdamsNordsieckTransformer |  | 100% |  | 100% | 0 | 23 | 0 | 74 | 0 | 7 | 0 | 1 |
LutherFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 47 | 0 | 5 | 0 | 1 |
HighamHall54Integrator |  | 100% |  | 100% | 0 | 11 | 0 | 20 | 0 | 9 | 0 | 1 |
DormandPrince54Integrator |  | 100% |  | 100% | 0 | 9 | 0 | 17 | 0 | 8 | 0 | 1 |
LutherIntegrator |  | 100% | | n/a | 0 | 6 | 0 | 7 | 0 | 6 | 0 | 1 |
GillFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 28 | 0 | 5 | 0 | 1 |
ExplicitRungeKuttaIntegrator |  | 100% |  | 100% | 0 | 9 | 0 | 26 | 0 | 4 | 0 | 1 |
ThreeEighthesFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 24 | 0 | 5 | 0 | 1 |
ClassicalRungeKuttaFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 24 | 0 | 5 | 0 | 1 |
AdamsMoultonFieldIntegrator.Corrector |  | 100% |  | 100% | 0 | 7 | 0 | 21 | 0 | 4 | 0 | 1 |
AdamsBashforthFieldIntegrator |  | 100% |  | 100% | 0 | 7 | 0 | 19 | 0 | 4 | 0 | 1 |
AdamsMoultonIntegrator.Corrector |  | 100% |  | 100% | 0 | 7 | 0 | 21 | 0 | 4 | 0 | 1 |
GillIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 9 | 0 | 5 | 0 | 1 |
AdamsBashforthIntegrator |  | 100% |  | 100% | 0 | 7 | 0 | 19 | 0 | 4 | 0 | 1 |
AdamsMoultonFieldIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 18 | 0 | 4 | 0 | 1 |
AdamsMoultonIntegrator |  | 100% |  | 100% | 0 | 6 | 0 | 18 | 0 | 4 | 0 | 1 |
ClassicalRungeKuttaIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
ThreeEighthesIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
MidpointFieldIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 13 | 0 | 5 | 0 | 1 |
EulerFieldIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 8 | 0 | 5 | 0 | 1 |
MidpointIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |
EulerIntegrator |  | 100% | | n/a | 0 | 5 | 0 | 6 | 0 | 5 | 0 | 1 |