LutherFieldIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.interpolators.LutherFieldStateInterpolator;
- import org.hipparchus.util.MathArrays;
- /**
- * This class implements the Luther sixth order Runge-Kutta
- * integrator for Ordinary Differential Equations.
- * <p>
- * This method is described in H. A. Luther 1968 paper <a
- * href="http://www.ams.org/journals/mcom/1968-22-102/S0025-5718-68-99876-1/S0025-5718-68-99876-1.pdf">
- * An explicit Sixth-Order Runge-Kutta Formula</a>.
- * </p>
- * <p>This method is an explicit Runge-Kutta method, its Butcher-array
- * is the following one :</p>
- * <pre>
- * 0 | 0 0 0 0 0 0
- * 1 | 1 0 0 0 0 0
- * 1/2 | 3/8 1/8 0 0 0 0
- * 2/3 | 8/27 2/27 8/27 0 0 0
- * (7-q)/14 | ( -21 + 9q)/392 ( -56 + 8q)/392 ( 336 - 48q)/392 ( -63 + 3q)/392 0 0
- * (7+q)/14 | (-1155 - 255q)/1960 ( -280 - 40q)/1960 ( 0 - 320q)/1960 ( 63 + 363q)/1960 ( 2352 + 392q)/1960 0
- * 1 | ( 330 + 105q)/180 ( 120 + 0q)/180 ( -200 + 280q)/180 ( 126 - 189q)/180 ( -686 - 126q)/180 ( 490 - 70q)/180
- * |--------------------------------------------------------------------------------------------------------------------------------------------------
- * | 1/20 0 16/45 0 49/180 49/180 1/20
- * </pre>
- * <p>where q = √21</p>
- *
- * @see EulerFieldIntegrator
- * @see ClassicalRungeKuttaFieldIntegrator
- * @see GillFieldIntegrator
- * @see MidpointFieldIntegrator
- * @see ThreeEighthesFieldIntegrator
- * @param <T> the type of the field elements
- */
- public class LutherFieldIntegrator<T extends CalculusFieldElement<T>>
- extends FixedStepRungeKuttaFieldIntegrator<T> {
- /** Name of integration scheme. */
- public static final String METHOD_NAME = LutherIntegrator.METHOD_NAME;
- /** Simple constructor.
- * Build a fourth-order Luther integrator with the given step.
- * @param field field to which the time and state vector elements belong
- * @param step integration step
- */
- public LutherFieldIntegrator(final Field<T> field, final T step) {
- super(field, METHOD_NAME, step);
- }
- /** {@inheritDoc} */
- @Override
- public T[] getC() {
- final T q = getField().getZero().add(21).sqrt();
- final T[] c = MathArrays.buildArray(getField(), 6);
- c[0] = getField().getOne();
- c[1] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 1, 2);
- c[2] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 2, 3);
- c[3] = q.subtract(7).divide(-14);
- c[4] = q.add(7).divide(14);
- c[5] = getField().getOne();
- return c;
- }
- /** {@inheritDoc} */
- @Override
- public T[][] getA() {
- final T q = getField().getZero().add(21).sqrt();
- final T[][] a = MathArrays.buildArray(getField(), 6, -1);
- for (int i = 0; i < a.length; ++i) {
- a[i] = MathArrays.buildArray(getField(), i + 1);
- }
- a[0][0] = getField().getOne();
- a[1][0] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 3, 8);
- a[1][1] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 1, 8);
- a[2][0] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 8, 27);
- a[2][1] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 2, 27);
- a[2][2] = a[2][0];
- a[3][0] = q.multiply( 9).add( -21).divide( 392);
- a[3][1] = q.multiply( 8).add( -56).divide( 392);
- a[3][2] = q.multiply( -48).add( 336).divide( 392);
- a[3][3] = q.multiply( 3).add( -63).divide( 392);
- a[4][0] = q.multiply(-255).add(-1155).divide(1960);
- a[4][1] = q.multiply( -40).add( -280).divide(1960);
- a[4][2] = q.multiply(-320) .divide(1960);
- a[4][3] = q.multiply( 363).add( 63).divide(1960);
- a[4][4] = q.multiply( 392).add( 2352).divide(1960);
- a[5][0] = q.multiply( 105).add( 330).divide( 180);
- a[5][1] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 2, 3);
- a[5][2] = q.multiply( 280).add( -200).divide( 180);
- a[5][3] = q.multiply(-189).add( 126).divide( 180);
- a[5][4] = q.multiply(-126).add( -686).divide( 180);
- a[5][5] = q.multiply( -70).add( 490).divide( 180);
- return a;
- }
- /** {@inheritDoc} */
- @Override
- public T[] getB() {
- final T[] b = MathArrays.buildArray(getField(), 7);
- b[0] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 1, 20);
- b[1] = getField().getZero();
- b[2] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 16, 45);
- b[3] = getField().getZero();
- b[4] = FieldExplicitRungeKuttaIntegrator.fraction(getField(), 49, 180);
- b[5] = b[4];
- b[6] = b[0];
- return b;
- }
- /** {@inheritDoc} */
- @Override
- protected LutherFieldStateInterpolator<T>
- createInterpolator(final boolean forward, T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldEquationsMapper<T> mapper) {
- return new LutherFieldStateInterpolator<>(getField(), forward, yDotK,
- globalPreviousState, globalCurrentState,
- globalPreviousState, globalCurrentState,
- mapper);
- }
- }