AdamsNordsieckFieldTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff;
- import java.util.Arrays;
- import java.util.HashMap;
- import java.util.Map;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.linear.Array2DRowFieldMatrix;
- import org.hipparchus.linear.ArrayFieldVector;
- import org.hipparchus.linear.FieldDecompositionSolver;
- import org.hipparchus.linear.FieldLUDecomposition;
- import org.hipparchus.linear.FieldMatrix;
- import org.hipparchus.util.MathArrays;
- /** Transformer to Nordsieck vectors for Adams integrators.
- * <p>This class is used by {@link AdamsBashforthIntegrator Adams-Bashforth} and
- * {@link AdamsMoultonIntegrator Adams-Moulton} integrators to convert between
- * classical representation with several previous first derivatives and Nordsieck
- * representation with higher order scaled derivatives.</p>
- *
- * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
- * \[
- * \left\{\begin{align}
- * s_1(n) &= h y'_n \text{ for first derivative}\\
- * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
- * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
- * &\cdots\\
- * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
- * \end{align}\right.
- * \]</p>
- *
- * <p>With the previous definition, the classical representation of multistep methods
- * uses first derivatives only, i.e. it handles y<sub>n</sub>, s<sub>1</sub>(n) and
- * q<sub>n</sub> where q<sub>n</sub> is defined as:
- * \[
- * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T
- * \]
- * (we omit the k index in the notation for clarity).</p>
- *
- * <p>Another possible representation uses the Nordsieck vector with
- * higher degrees scaled derivatives all taken at the same step, i.e it handles y<sub>n</sub>,
- * s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
- * \[
- * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
- * \]
- * (here again we omit the k index in the notation for clarity)
- * </p>
- *
- * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
- * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
- * for degree k polynomials.
- * \[
- * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n)
- * \]
- * The previous formula can be used with several values for i to compute the transform between
- * classical representation and Nordsieck vector at step end. The transform between r<sub>n</sub>
- * and q<sub>n</sub> resulting from the Taylor series formulas above is:
- * \[
- * q_n = s_1(n) u + P r_n
- * \]
- * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built
- * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being
- * the column number starting from 1:
- * \[
- * P=\begin{bmatrix}
- * -2 & 3 & -4 & 5 & \ldots \\
- * -4 & 12 & -32 & 80 & \ldots \\
- * -6 & 27 & -108 & 405 & \ldots \\
- * -8 & 48 & -256 & 1280 & \ldots \\
- * & & \ldots\\
- * \end{bmatrix}
- * \]
- *
- * <p>Changing -i into +i in the formula above can be used to compute a similar transform between
- * classical representation and Nordsieck vector at step start. The resulting matrix is simply
- * the absolute value of matrix P.</p>
- *
- * <p>For {@link AdamsBashforthIntegrator Adams-Bashforth} method, the Nordsieck vector
- * at step n+1 is computed from the Nordsieck vector at step n as follows:
- * <ul>
- * <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
- * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
- * <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
- * </ul>
- * <p>where A is a rows shifting matrix (the lower left part is an identity matrix):</p>
- * <pre>
- * [ 0 0 ... 0 0 | 0 ]
- * [ ---------------+---]
- * [ 1 0 ... 0 0 | 0 ]
- * A = [ 0 1 ... 0 0 | 0 ]
- * [ ... | 0 ]
- * [ 0 0 ... 1 0 | 0 ]
- * [ 0 0 ... 0 1 | 0 ]
- * </pre>
- *
- * <p>For {@link AdamsMoultonIntegrator Adams-Moulton} method, the predicted Nordsieck vector
- * at step n+1 is computed from the Nordsieck vector at step n as follows:
- * <ul>
- * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
- * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
- * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
- * </ul>
- * From this predicted vector, the corrected vector is computed as follows:
- * <ul>
- * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li>
- * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
- * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
- * </ul>
- * <p>where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
- * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
- * represent the corrected states.</p>
- *
- * <p>We observe that both methods use similar update formulas. In both cases a P<sup>-1</sup>u
- * vector and a P<sup>-1</sup> A P matrix are used that do not depend on the state,
- * they only depend on k. This class handles these transformations.</p>
- *
- * @param <T> the type of the field elements
- */
- public class AdamsNordsieckFieldTransformer<T extends CalculusFieldElement<T>> {
- /** Cache for already computed coefficients. */
- private static final Map<Integer,
- Map<Field<? extends CalculusFieldElement<?>>,
- AdamsNordsieckFieldTransformer<? extends CalculusFieldElement<?>>>> CACHE = new HashMap<>();
- /** Field to which the time and state vector elements belong. */
- private final Field<T> field;
- /** Update matrix for the higher order derivatives h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ... */
- private final Array2DRowFieldMatrix<T> update;
- /** Update coefficients of the higher order derivatives wrt y'. */
- private final T[] c1;
- /** Simple constructor.
- * @param field field to which the time and state vector elements belong
- * @param n number of steps of the multistep method
- * (excluding the one being computed)
- */
- private AdamsNordsieckFieldTransformer(final Field<T> field, final int n) {
- this.field = field;
- final int rows = n - 1;
- // compute coefficients
- FieldMatrix<T> bigP = buildP(rows);
- FieldDecompositionSolver<T> pSolver =
- new FieldLUDecomposition<>(bigP).getSolver();
- T[] u = MathArrays.buildArray(field, rows);
- Arrays.fill(u, field.getOne());
- c1 = pSolver.solve(new ArrayFieldVector<>(u, false)).toArray();
- // update coefficients are computed by combining transform from
- // Nordsieck to multistep, then shifting rows to represent step advance
- // then applying inverse transform
- T[][] shiftedP = bigP.getData();
- for (int i = shiftedP.length - 1; i > 0; --i) {
- // shift rows
- shiftedP[i] = shiftedP[i - 1];
- }
- shiftedP[0] = MathArrays.buildArray(field, rows);
- Arrays.fill(shiftedP[0], field.getZero());
- update = new Array2DRowFieldMatrix<>(pSolver.solve(new Array2DRowFieldMatrix<>(shiftedP, false)).getData());
- }
- /** Get the Nordsieck transformer for a given field and number of steps.
- * @param field field to which the time and state vector elements belong
- * @param nSteps number of steps of the multistep method
- * (excluding the one being computed)
- * @return Nordsieck transformer for the specified field and number of steps
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> AdamsNordsieckFieldTransformer<T>
- getInstance(final Field<T> field, final int nSteps) { // NOPMD - PMD false positive
- synchronized(CACHE) {
- Map<Field<? extends CalculusFieldElement<?>>,
- AdamsNordsieckFieldTransformer<? extends CalculusFieldElement<?>>> map = CACHE.computeIfAbsent(nSteps, k -> new HashMap<>());
- @SuppressWarnings("unchecked")
- AdamsNordsieckFieldTransformer<T> t = (AdamsNordsieckFieldTransformer<T>) map.get(field);
- if (t == null) {
- t = new AdamsNordsieckFieldTransformer<>(field, nSteps);
- map.put(field, t);
- }
- return t;
- }
- }
- /** Build the P matrix.
- * <p>The P matrix general terms are shifted \((j+1) (-i)^j\) terms
- * with i being the row number starting from 1 and j being the column
- * number starting from 1:
- * <pre>
- * [ -2 3 -4 5 ... ]
- * [ -4 12 -32 80 ... ]
- * P = [ -6 27 -108 405 ... ]
- * [ -8 48 -256 1280 ... ]
- * [ ... ]
- * </pre></p>
- * @param rows number of rows of the matrix
- * @return P matrix
- */
- private FieldMatrix<T> buildP(final int rows) {
- final T[][] pData = MathArrays.buildArray(field, rows, rows);
- for (int i = 1; i <= pData.length; ++i) {
- // build the P matrix elements from Taylor series formulas
- final T[] pI = pData[i - 1];
- final int factor = -i;
- T aj = field.getZero().add(factor);
- for (int j = 1; j <= pI.length; ++j) {
- pI[j - 1] = aj.multiply(j + 1);
- aj = aj.multiply(factor);
- }
- }
- return new Array2DRowFieldMatrix<>(pData, false);
- }
- /** Initialize the high order scaled derivatives at step start.
- * @param h step size to use for scaling
- * @param t first steps times
- * @param y first steps states
- * @param yDot first steps derivatives
- * @return Nordieck vector at start of first step (h<sup>2</sup>/2 y''<sub>n</sub>,
- * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
- */
- public Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(final T h, final T[] t,
- final T[][] y,
- final T[][] yDot) {
- // using Taylor series with di = ti - t0, we get:
- // y(ti) - y(t0) - di y'(t0) = di^2 / h^2 s2 + ... + di^k / h^k sk + O(h^k)
- // y'(ti) - y'(t0) = 2 di / h^2 s2 + ... + k di^(k-1) / h^k sk + O(h^(k-1))
- // we write these relations for i = 1 to i= 1+n/2 as a set of n + 2 linear
- // equations depending on the Nordsieck vector [s2 ... sk rk], so s2 to sk correspond
- // to the appropriately truncated Taylor expansion, and rk is the Taylor remainder.
- // The goal is to have s2 to sk as accurate as possible considering the fact the sum is
- // truncated and we don't want the error terms to be included in s2 ... sk, so we need
- // to solve also for the remainder
- final T[][] a = MathArrays.buildArray(field, c1.length + 1, c1.length + 1);
- final T[][] b = MathArrays.buildArray(field, c1.length + 1, y[0].length);
- final T[] y0 = y[0];
- final T[] yDot0 = yDot[0];
- for (int i = 1; i < y.length; ++i) {
- final T di = t[i].subtract(t[0]);
- final T ratio = di.divide(h);
- T dikM1Ohk = h.reciprocal();
- // linear coefficients of equations
- // y(ti) - y(t0) - di y'(t0) and y'(ti) - y'(t0)
- final T[] aI = a[2 * i - 2];
- final T[] aDotI = (2 * i - 1) < a.length ? a[2 * i - 1] : null;
- for (int j = 0; j < aI.length; ++j) {
- dikM1Ohk = dikM1Ohk.multiply(ratio);
- aI[j] = di.multiply(dikM1Ohk);
- if (aDotI != null) {
- aDotI[j] = dikM1Ohk.multiply(j + 2);
- }
- }
- // expected value of the previous equations
- final T[] yI = y[i];
- final T[] yDotI = yDot[i];
- final T[] bI = b[2 * i - 2];
- final T[] bDotI = (2 * i - 1) < b.length ? b[2 * i - 1] : null;
- for (int j = 0; j < yI.length; ++j) {
- bI[j] = yI[j].subtract(y0[j]).subtract(di.multiply(yDot0[j]));
- if (bDotI != null) {
- bDotI[j] = yDotI[j].subtract(yDot0[j]);
- }
- }
- }
- // solve the linear system to get the best estimate of the Nordsieck vector [s2 ... sk],
- // with the additional terms s(k+1) and c grabbing the parts after the truncated Taylor expansion
- final FieldLUDecomposition<T> decomposition = new FieldLUDecomposition<>(new Array2DRowFieldMatrix<>(a, false));
- final FieldMatrix<T> x = decomposition.getSolver().solve(new Array2DRowFieldMatrix<>(b, false));
- // extract just the Nordsieck vector [s2 ... sk]
- final Array2DRowFieldMatrix<T> truncatedX =
- new Array2DRowFieldMatrix<>(field, x.getRowDimension() - 1, x.getColumnDimension());
- for (int i = 0; i < truncatedX.getRowDimension(); ++i) {
- for (int j = 0; j < truncatedX.getColumnDimension(); ++j) {
- truncatedX.setEntry(i, j, x.getEntry(i, j));
- }
- }
- return truncatedX;
- }
- /** Update the high order scaled derivatives for Adams integrators (phase 1).
- * <p>The complete update of high order derivatives has a form similar to:
- * \[
- * r_{n+1} = (s_1(n) - s_1(n+1)) P^{-1} u + P^{-1} A P r_n
- * \]
- * this method computes the P<sup>-1</sup> A P r<sub>n</sub> part.</p>
- * @param highOrder high order scaled derivatives
- * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
- * @return updated high order derivatives
- * @see #updateHighOrderDerivativesPhase2(CalculusFieldElement[], CalculusFieldElement[], Array2DRowFieldMatrix)
- */
- public Array2DRowFieldMatrix<T> updateHighOrderDerivativesPhase1(final Array2DRowFieldMatrix<T> highOrder) {
- return update.multiply(highOrder);
- }
- /** Update the high order scaled derivatives Adams integrators (phase 2).
- * <p>The complete update of high order derivatives has a form similar to:
- * \[
- * r_{n+1} = (s_1(n) - s_1(n+1)) P^{-1} u + P^{-1} A P r_n
- * \]
- * this method computes the (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u part.</p>
- * <p>Phase 1 of the update must already have been performed.</p>
- * @param start first order scaled derivatives at step start
- * @param end first order scaled derivatives at step end
- * @param highOrder high order scaled derivatives, will be modified
- * (h<sup>2</sup>/2 y'', ... h<sup>k</sup>/k! y(k))
- * @see #updateHighOrderDerivativesPhase1(Array2DRowFieldMatrix)
- */
- public void updateHighOrderDerivativesPhase2(final T[] start,
- final T[] end,
- final Array2DRowFieldMatrix<T> highOrder) {
- final T[][] data = highOrder.getDataRef();
- for (int i = 0; i < data.length; ++i) {
- final T[] dataI = data[i];
- final T c1I = c1[i];
- for (int j = 0; j < dataI.length; ++j) {
- dataI[j] = dataI[j].add(c1I.multiply(start[j].subtract(end[j])));
- }
- }
- }
- }