AdamsMoultonIntegrator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff;
- import java.util.Arrays;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.linear.Array2DRowRealMatrix;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.linear.RealMatrixPreservingVisitor;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.LocalizedODEFormats;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.interpolators.AdamsStateInterpolator;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements implicit Adams-Moulton integrators for Ordinary
- * Differential Equations.
- *
- * <p>Adams-Moulton methods (in fact due to Adams alone) are implicit
- * multistep ODE solvers. This implementation is a variation of the classical
- * one: it uses adaptive stepsize to implement error control, whereas
- * classical implementations are fixed step size. The value of state vector
- * at step n+1 is a simple combination of the value at step n and of the
- * derivatives at steps n+1, n, n-1 ... Since y'<sub>n+1</sub> is needed to
- * compute y<sub>n+1</sub>, another method must be used to compute a first
- * estimate of y<sub>n+1</sub>, then compute y'<sub>n+1</sub>, then compute
- * a final estimate of y<sub>n+1</sub> using the following formulas. Depending
- * on the number k of previous steps one wants to use for computing the next
- * value, different formulas are available for the final estimate:</p>
- * <ul>
- * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n+1</sub></li>
- * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (y'<sub>n+1</sub>+y'<sub>n</sub>)/2</li>
- * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (5y'<sub>n+1</sub>+8y'<sub>n</sub>-y'<sub>n-1</sub>)/12</li>
- * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (9y'<sub>n+1</sub>+19y'<sub>n</sub>-5y'<sub>n-1</sub>+y'<sub>n-2</sub>)/24</li>
- * <li>...</li>
- * </ul>
- *
- * <p>A k-steps Adams-Moulton method is of order k+1.</p>
- *
- * <p> There must be sufficient time for the {@link #setStarterIntegrator(org.hipparchus.ode.ODEIntegrator)
- * starter integrator} to take several steps between the the last reset event, and the end
- * of integration, otherwise an exception may be thrown during integration. The user can
- * adjust the end date of integration, or the step size of the starter integrator to
- * ensure a sufficient number of steps can be completed before the end of integration.
- * </p>
- *
- * <p><strong>Implementation details</strong></p>
- *
- * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
- * \[
- * \left\{\begin{align}
- * s_1(n) &= h y'_n \text{ for first derivative}\\
- * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
- * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
- * &\cdots\\
- * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
- * \end{align}\right.
- * \]</p>
- *
- * <p>The definitions above use the classical representation with several previous first
- * derivatives. Lets define
- * \[
- * q_n = [ s_1(n-1) s_1(n-2) \ldots s_1(n-(k-1)) ]^T
- * \]
- * (we omit the k index in the notation for clarity). With these definitions,
- * Adams-Moulton methods can be written:</p>
- * <ul>
- * <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1)</li>
- * <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 1/2 s<sub>1</sub>(n+1) + [ 1/2 ] q<sub>n+1</sub></li>
- * <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 5/12 s<sub>1</sub>(n+1) + [ 8/12 -1/12 ] q<sub>n+1</sub></li>
- * <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 9/24 s<sub>1</sub>(n+1) + [ 19/24 -5/24 1/24 ] q<sub>n+1</sub></li>
- * <li>...</li>
- * </ul>
- *
- * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
- * s<sub>1</sub>(n+1) and q<sub>n+1</sub>), our implementation uses the Nordsieck vector with
- * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
- * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
- * \[
- * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
- * \]
- * (here again we omit the k index in the notation for clarity)
- * </p>
- *
- * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
- * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
- * for degree k polynomials.
- * \[
- * s_1(n-i) = s_1(n) + \sum_{j\gt 0} (j+1) (-i)^j s_{j+1}(n)
- * \]
- * The previous formula can be used with several values for i to compute the transform between
- * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
- * and q<sub>n</sub> resulting from the Taylor series formulas above is:
- * \[
- * q_n = s_1(n) u + P r_n
- * \]
- * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)×(k-1) matrix built
- * with the \((j+1) (-i)^j\) terms with i being the row number starting from 1 and j being
- * the column number starting from 1:
- * \[
- * P=\begin{bmatrix}
- * -2 & 3 & -4 & 5 & \ldots \\
- * -4 & 12 & -32 & 80 & \ldots \\
- * -6 & 27 & -108 & 405 & \ldots \\
- * -8 & 48 & -256 & 1280 & \ldots \\
- * & & \ldots\\
- * \end{bmatrix}
- * \]
- *
- * <p>Using the Nordsieck vector has several advantages:</p>
- * <ul>
- * <li>it greatly simplifies step interpolation as the interpolator mainly applies
- * Taylor series formulas,</li>
- * <li>it simplifies step changes that occur when discrete events that truncate
- * the step are triggered,</li>
- * <li>it allows to extend the methods in order to support adaptive stepsize.</li>
- * </ul>
- *
- * <p>The predicted Nordsieck vector at step n+1 is computed from the Nordsieck vector at step
- * n as follows:
- * <ul>
- * <li>Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
- * <li>S<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, Y<sub>n+1</sub>)</li>
- * <li>R<sub>n+1</sub> = (s<sub>1</sub>(n) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
- * </ul>
- * where A is a rows shifting matrix (the lower left part is an identity matrix):
- * <pre>
- * [ 0 0 ... 0 0 | 0 ]
- * [ ---------------+---]
- * [ 1 0 ... 0 0 | 0 ]
- * A = [ 0 1 ... 0 0 | 0 ]
- * [ ... | 0 ]
- * [ 0 0 ... 1 0 | 0 ]
- * [ 0 0 ... 0 1 | 0 ]
- * </pre>
- * From this predicted vector, the corrected vector is computed as follows:
- * <ul>
- * <li>y<sub>n+1</sub> = y<sub>n</sub> + S<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub></li>
- * <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
- * <li>r<sub>n+1</sub> = R<sub>n+1</sub> + (s<sub>1</sub>(n+1) - S<sub>1</sub>(n+1)) P<sup>-1</sup> u</li>
- * </ul>
- * <p>where the upper case Y<sub>n+1</sub>, S<sub>1</sub>(n+1) and R<sub>n+1</sub> represent the
- * predicted states whereas the lower case y<sub>n+1</sub>, s<sub>n+1</sub> and r<sub>n+1</sub>
- * represent the corrected states.</p>
- *
- * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
- * they only depend on k and therefore are precomputed once for all.</p>
- *
- */
- public class AdamsMoultonIntegrator extends AdamsIntegrator {
- /** Name of integration scheme. */
- public static final String METHOD_NAME = "Adams-Moulton";
- /**
- * Build an Adams-Moulton integrator with the given order and error control parameters.
- * @param nSteps number of steps of the method excluding the one being computed
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- * @exception MathIllegalArgumentException if order is 1 or less
- */
- public AdamsMoultonIntegrator(final int nSteps,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance)
- throws MathIllegalArgumentException {
- super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
- scalAbsoluteTolerance, scalRelativeTolerance);
- }
- /**
- * Build an Adams-Moulton integrator with the given order and error control parameters.
- * @param nSteps number of steps of the method excluding the one being computed
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- * @exception IllegalArgumentException if order is 1 or less
- */
- public AdamsMoultonIntegrator(final int nSteps,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance)
- throws IllegalArgumentException {
- super(METHOD_NAME, nSteps, nSteps + 1, minStep, maxStep,
- vecAbsoluteTolerance, vecRelativeTolerance);
- }
- /** {@inheritDoc} */
- @Override
- protected double errorEstimation(final double[] previousState, final double predictedTime,
- final double[] predictedState,
- final double[] predictedScaled,
- final RealMatrix predictedNordsieck) {
- final double error = predictedNordsieck.walkInOptimizedOrder(new Corrector(previousState, predictedScaled, predictedState));
- if (Double.isNaN(error)) {
- throw new MathIllegalStateException(LocalizedODEFormats.NAN_APPEARING_DURING_INTEGRATION,
- predictedTime);
- }
- return error;
- }
- /** {@inheritDoc} */
- @Override
- protected AdamsStateInterpolator finalizeStep(final double stepSize, final double[] predictedState,
- final double[] predictedScaled, final Array2DRowRealMatrix predictedNordsieck,
- final boolean isForward,
- final ODEStateAndDerivative globalPreviousState,
- final ODEStateAndDerivative globalCurrentState,
- final EquationsMapper equationsMapper) {
- final double[] correctedYDot = computeDerivatives(globalCurrentState.getTime(), predictedState);
- // update Nordsieck vector
- final double[] correctedScaled = new double[predictedState.length];
- for (int j = 0; j < correctedScaled.length; ++j) {
- correctedScaled[j] = getStepSize() * correctedYDot[j];
- }
- updateHighOrderDerivativesPhase2(predictedScaled, correctedScaled, predictedNordsieck);
- final ODEStateAndDerivative updatedStepEnd =
- equationsMapper.mapStateAndDerivative(globalCurrentState.getTime(),
- predictedState, correctedYDot);
- return new AdamsStateInterpolator(getStepSize(), updatedStepEnd,
- correctedScaled, predictedNordsieck, isForward,
- getStepStart(), updatedStepEnd,
- equationsMapper);
- }
- /** Corrector for current state in Adams-Moulton method.
- * <p>
- * This visitor implements the Taylor series formula:
- * <pre>
- * Y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n+1) + [ -1 +1 -1 +1 ... ±1 ] r<sub>n+1</sub>
- * </pre>
- * </p>
- */
- private class Corrector implements RealMatrixPreservingVisitor {
- /** Previous state. */
- private final double[] previous;
- /** Current scaled first derivative. */
- private final double[] scaled;
- /** Current state before correction. */
- private final double[] before;
- /** Current state after correction. */
- private final double[] after;
- /** Simple constructor.
- * <p>
- * All arrays will be stored by reference to caller arrays.
- * </p>
- * @param previous previous state
- * @param scaled current scaled first derivative
- * @param state state to correct (will be overwritten after visit)
- */
- Corrector(final double[] previous, final double[] scaled, final double[] state) {
- this.previous = previous; // NOPMD - array reference storage is intentional and documented here
- this.scaled = scaled; // NOPMD - array reference storage is intentional and documented here
- this.after = state; // NOPMD - array reference storage is intentional and documented here
- this.before = state.clone();
- }
- /** {@inheritDoc} */
- @Override
- public void start(int rows, int columns,
- int startRow, int endRow, int startColumn, int endColumn) {
- Arrays.fill(after, 0.0);
- }
- /** {@inheritDoc} */
- @Override
- public void visit(int row, int column, double value) {
- if ((row & 0x1) == 0) {
- after[column] -= value;
- } else {
- after[column] += value;
- }
- }
- /**
- * End visiting the Nordsieck vector.
- * <p>The correction is used to control stepsize. So its amplitude is
- * considered to be an error, which must be normalized according to
- * error control settings. If the normalized value is greater than 1,
- * the correction was too large and the step must be rejected.</p>
- * @return the normalized correction, if greater than 1, the step
- * must be rejected
- */
- @Override
- public double end() {
- final StepsizeHelper helper = getStepSizeHelper();
- double error = 0;
- for (int i = 0; i < after.length; ++i) {
- after[i] += previous[i] + scaled[i];
- if (i < helper.getMainSetDimension()) {
- final double tol = helper.getTolerance(i, FastMath.max(FastMath.abs(previous[i]), FastMath.abs(after[i])));
- final double ratio = (after[i] - before[i]) / tol; // (corrected-predicted)/tol
- error += ratio * ratio;
- }
- }
- return FastMath.sqrt(error / helper.getMainSetDimension());
- }
- }
- }