GraggBulirschStoerStateInterpolator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.GraggBulirschStoerIntegrator;
- import org.hipparchus.ode.sampling.AbstractODEStateInterpolator;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements an interpolator for the Gragg-Bulirsch-Stoer
- * integrator.
- *
- * <p>This interpolator compute dense output inside the last step
- * produced by a Gragg-Bulirsch-Stoer integrator.</p>
- *
- * <p>
- * This implementation is basically a reimplementation in Java of the
- * <a
- * href="http://www.unige.ch/math/folks/hairer/prog/nonstiff/odex.f">odex</a>
- * fortran code by E. Hairer and G. Wanner. The redistribution policy
- * for this code is available <a
- * href="http://www.unige.ch/~hairer/prog/licence.txt">here</a>, for
- * convenience, it is reproduced below.</p>
- *
- * <blockquote>
- * <p>Copyright (c) 2004, Ernst Hairer</p>
- *
- * <p>Redistribution and use in source and binary forms, with or
- * without modification, are permitted provided that the following
- * conditions are met:</p>
- * <ul>
- * <li>Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.</li>
- * <li>Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.</li>
- * </ul>
- *
- * <p><strong>THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
- * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
- * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.</strong></p>
- * </blockquote>
- *
- * @see GraggBulirschStoerIntegrator
- */
- public class GraggBulirschStoerStateInterpolator extends AbstractODEStateInterpolator {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160329L;
- /** Scaled derivatives at the middle of the step $\tau$.
- * (element k is $h^{k} d^{k}y(\tau)/dt^{k}$ where h is step size...)
- */
- private final double[][] yMidDots;
- /** Interpolation polynomials. */
- private final double[][] polynomials;
- /** Error coefficients for the interpolation. */
- private final double[] errfac;
- /** Degree of the interpolation polynomials. */
- private final int currentDegree;
- /** Simple constructor.
- * @param forward integration direction indicator
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- * @param yMidDots scaled derivatives at the middle of the step $\tau$
- * (element k is $h^{k} d^{k}y(\tau)/dt^{k}$ where h is step size...)
- * @param mu degree of the interpolation polynomial
- */
- public GraggBulirschStoerStateInterpolator(final boolean forward,
- final ODEStateAndDerivative globalPreviousState,
- final ODEStateAndDerivative globalCurrentState,
- final ODEStateAndDerivative softPreviousState,
- final ODEStateAndDerivative softCurrentState,
- final EquationsMapper mapper,
- final double[][] yMidDots,
- final int mu) {
- super(forward, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper);
- this.yMidDots = yMidDots.clone();
- this.currentDegree = mu + 4;
- this.polynomials = new double[currentDegree + 1][getCurrentState().getCompleteStateDimension()];
- // initialize the error factors array for interpolation
- if (currentDegree <= 4) {
- errfac = null;
- } else {
- errfac = new double[currentDegree - 4];
- for (int i = 0; i < errfac.length; ++i) {
- final int ip5 = i + 5;
- errfac[i] = 1.0 / (ip5 * ip5);
- final double e = 0.5 * FastMath.sqrt (((double) (i + 1)) / ip5);
- for (int j = 0; j <= i; ++j) {
- errfac[i] *= e / (j + 1);
- }
- }
- }
- // compute the interpolation coefficients
- computeCoefficients(mu);
- }
- /** {@inheritDoc} */
- @Override
- protected GraggBulirschStoerStateInterpolator create(final boolean newForward,
- final ODEStateAndDerivative newGlobalPreviousState,
- final ODEStateAndDerivative newGlobalCurrentState,
- final ODEStateAndDerivative newSoftPreviousState,
- final ODEStateAndDerivative newSoftCurrentState,
- final EquationsMapper newMapper) {
- return new GraggBulirschStoerStateInterpolator(newForward,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper, yMidDots, currentDegree - 4);
- }
- /** Compute the interpolation coefficients for dense output.
- * @param mu degree of the interpolation polynomial
- */
- private void computeCoefficients(final int mu) {
- final double[] y0Dot = getGlobalPreviousState().getCompleteDerivative();
- final double[] y1Dot = getGlobalCurrentState().getCompleteDerivative();
- final double[] y1 = getGlobalCurrentState().getCompleteState();
- final double[] previousState = getGlobalPreviousState().getCompleteState();
- final double h = getGlobalCurrentState().getTime() - getGlobalPreviousState().getTime();
- for (int i = 0; i < previousState.length; ++i) {
- final double yp0 = h * y0Dot[i];
- final double yp1 = h * y1Dot[i];
- final double ydiff = y1[i] - previousState[i];
- final double aspl = ydiff - yp1;
- final double bspl = yp0 - ydiff;
- polynomials[0][i] = previousState[i];
- polynomials[1][i] = ydiff;
- polynomials[2][i] = aspl;
- polynomials[3][i] = bspl;
- if (mu < 0) {
- return;
- }
- // compute the remaining coefficients
- final double ph0 = 0.5 * (previousState[i] + y1[i]) + 0.125 * (aspl + bspl);
- polynomials[4][i] = 16 * (yMidDots[0][i] - ph0);
- if (mu > 0) {
- final double ph1 = ydiff + 0.25 * (aspl - bspl);
- polynomials[5][i] = 16 * (yMidDots[1][i] - ph1);
- if (mu > 1) {
- final double ph2 = yp1 - yp0;
- polynomials[6][i] = 16 * (yMidDots[2][i] - ph2 + polynomials[4][i]);
- if (mu > 2) {
- final double ph3 = 6 * (bspl - aspl);
- polynomials[7][i] = 16 * (yMidDots[3][i] - ph3 + 3 * polynomials[5][i]);
- for (int j = 4; j <= mu; ++j) {
- final double fac1 = 0.5 * j * (j - 1);
- final double fac2 = 2 * fac1 * (j - 2) * (j - 3);
- polynomials[j+4][i] =
- 16 * (yMidDots[j][i] + fac1 * polynomials[j+2][i] - fac2 * polynomials[j][i]);
- }
- }
- }
- }
- }
- }
- /** Estimate interpolation error.
- * @param scale scaling array
- * @return estimate of the interpolation error
- */
- public double estimateError(final double[] scale) {
- double error = 0;
- if (currentDegree >= 5) {
- for (int i = 0; i < scale.length; ++i) {
- final double e = polynomials[currentDegree][i] / scale[i];
- error += e * e;
- }
- error = FastMath.sqrt(error / scale.length) * errfac[currentDegree - 5];
- }
- return error;
- }
- /** {@inheritDoc} */
- @Override
- protected ODEStateAndDerivative computeInterpolatedStateAndDerivatives(final EquationsMapper mapper,
- final double time, final double theta,
- final double thetaH, final double oneMinusThetaH) {
- final int dimension = mapper.getTotalDimension();
- final double h = thetaH / theta;
- final double oneMinusTheta = 1.0 - theta;
- final double theta05 = theta - 0.5;
- final double tOmT = theta * oneMinusTheta;
- final double t4 = tOmT * tOmT;
- final double t4Dot = 2 * tOmT * (1 - 2 * theta);
- final double dot1 = 1.0 / h;
- final double dot2 = theta * (2 - 3 * theta) / h;
- final double dot3 = ((3 * theta - 4) * theta + 1) / h;
- final double[] interpolatedState = new double[dimension];
- final double[] interpolatedDerivatives = new double[dimension];
- for (int i = 0; i < dimension; ++i) {
- final double p0 = polynomials[0][i];
- final double p1 = polynomials[1][i];
- final double p2 = polynomials[2][i];
- final double p3 = polynomials[3][i];
- interpolatedState[i] = p0 + theta * (p1 + oneMinusTheta * (p2 * theta + p3 * oneMinusTheta));
- interpolatedDerivatives[i] = dot1 * p1 + dot2 * p2 + dot3 * p3;
- if (currentDegree > 3) {
- double cDot = 0;
- double c = polynomials[currentDegree][i];
- for (int j = currentDegree - 1; j > 3; --j) {
- final double d = 1.0 / (j - 3);
- cDot = d * (theta05 * cDot + c);
- c = polynomials[j][i] + c * d * theta05;
- }
- interpolatedState[i] += t4 * c;
- interpolatedDerivatives[i] += (t4 * cDot + t4Dot * c) / h;
- }
- }
- if (h == 0) {
- // in this degenerated case, the previous computation leads to NaN for derivatives
- // we fix this by using the derivatives at midpoint
- System.arraycopy(yMidDots[1], 0, interpolatedDerivatives, 0, dimension);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }