GillStateInterpolator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.GillIntegrator;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements a step interpolator for the Gill fourth
- * order Runge-Kutta integrator.
- *
- * <p>This interpolator allows to compute dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme :</p>
- * <ul>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
- * + θ (h/6) [ (6 - 9 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
- * + ( 6 θ - 4 θ<sup>2</sup>) ((1-1/√2) y'<sub>2</sub> + (1+1/√2)) y'<sub>3</sub>)
- * + ( - 3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
- * - (1 - θ) (h/6) [ (1 - 5 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
- * + (2 + 2 θ - 4 θ<sup>2</sup>) ((1-1/√2) y'<sub>2</sub> + (1+1/√2)) y'<sub>3</sub>)
- * + (1 + θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * </ul>
- * <p>where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub>
- * are the four evaluations of the derivatives already computed during
- * the step.</p>
- *
- * @see GillIntegrator
- */
- public class GillStateInterpolator extends RungeKuttaStateInterpolator {
- /** First Gill coefficient. */
- private static final double ONE_MINUS_INV_SQRT_2 = 1 - FastMath.sqrt(0.5);
- /** Second Gill coefficient. */
- private static final double ONE_PLUS_INV_SQRT_2 = 1 + FastMath.sqrt(0.5);
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160328L;
- /** Simple constructor.
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public GillStateInterpolator(final boolean forward,
- final double[][] yDotK,
- final ODEStateAndDerivative globalPreviousState,
- final ODEStateAndDerivative globalCurrentState,
- final ODEStateAndDerivative softPreviousState,
- final ODEStateAndDerivative softCurrentState,
- final EquationsMapper mapper) {
- super(forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper);
- }
- /** {@inheritDoc} */
- @Override
- protected GillStateInterpolator create(final boolean newForward, final double[][] newYDotK,
- final ODEStateAndDerivative newGlobalPreviousState,
- final ODEStateAndDerivative newGlobalCurrentState,
- final ODEStateAndDerivative newSoftPreviousState,
- final ODEStateAndDerivative newSoftCurrentState,
- final EquationsMapper newMapper) {
- return new GillStateInterpolator(newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** {@inheritDoc} */
- @Override
- protected ODEStateAndDerivative computeInterpolatedStateAndDerivatives(final EquationsMapper mapper,
- final double time, final double theta,
- final double thetaH, final double oneMinusThetaH) {
- final double twoTheta = 2 * theta;
- final double fourTheta2 = twoTheta * twoTheta;
- final double coeffDot1 = theta * (twoTheta - 3) + 1;
- final double cDot23 = twoTheta * (1 - theta);
- final double coeffDot2 = cDot23 * ONE_MINUS_INV_SQRT_2;
- final double coeffDot3 = cDot23 * ONE_PLUS_INV_SQRT_2;
- final double coeffDot4 = theta * (twoTheta - 1);
- final double[] interpolatedState;
- final double[] interpolatedDerivatives;
- if (getGlobalPreviousState() != null && theta <= 0.5) {
- final double s = thetaH / 6.0;
- final double c23 = s * (6 * theta - fourTheta2);
- final double coeff1 = s * (6 - 9 * theta + fourTheta2);
- final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2;
- final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2;
- final double coeff4 = s * (-3 * theta + fourTheta2);
- interpolatedState = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3 , coeffDot4);
- } else {
- final double s = oneMinusThetaH / -6.0;
- final double c23 = s * (2 + twoTheta - fourTheta2);
- final double coeff1 = s * (1 - 5 * theta + fourTheta2);
- final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2;
- final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2;
- final double coeff4 = s * (1 + theta + fourTheta2);
- interpolatedState = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3 , coeffDot4);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }