GillFieldStateInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.GillFieldIntegrator;
- /**
- * This class implements a step interpolator for the Gill fourth
- * order Runge-Kutta integrator.
- *
- * <p>This interpolator allows to compute dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme :</p>
- * <ul>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
- * + θ (h/6) [ (6 - 9 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
- * + ( 6 θ - 4 θ<sup>2</sup>) ((1-1/√2) y'<sub>2</sub> + (1+1/√2)) y'<sub>3</sub>)
- * + ( - 3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
- * - (1 - θ) (h/6) [ (1 - 5 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
- * + (2 + 2 θ - 4 θ<sup>2</sup>) ((1-1/√2) y'<sub>2</sub> + (1+1/√2)) y'<sub>3</sub>)
- * + (1 + θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * </ul>
- * <p>where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub>
- * are the four evaluations of the derivatives already computed during
- * the step.</p>
- *
- * @see GillFieldIntegrator
- * @param <T> the type of the field elements
- */
- public class GillFieldStateInterpolator<T extends CalculusFieldElement<T>>
- extends RungeKuttaFieldStateInterpolator<T> {
- /** First Gill coefficient. */
- private final T one_minus_inv_sqrt_2;
- /** Second Gill coefficient. */
- private final T one_plus_inv_sqrt_2;
- /** Simple constructor.
- * @param field field to which the time and state vector elements belong
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public GillFieldStateInterpolator(final Field<T> field, final boolean forward,
- final T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldODEStateAndDerivative<T> softPreviousState,
- final FieldODEStateAndDerivative<T> softCurrentState,
- final FieldEquationsMapper<T> mapper) {
- super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
- mapper);
- final T sqrt = field.getZero().add(0.5).sqrt();
- one_minus_inv_sqrt_2 = field.getOne().subtract(sqrt);
- one_plus_inv_sqrt_2 = field.getOne().add(sqrt);
- }
- /** {@inheritDoc} */
- @Override
- protected GillFieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
- final FieldODEStateAndDerivative<T> newGlobalPreviousState,
- final FieldODEStateAndDerivative<T> newGlobalCurrentState,
- final FieldODEStateAndDerivative<T> newSoftPreviousState,
- final FieldODEStateAndDerivative<T> newSoftCurrentState,
- final FieldEquationsMapper<T> newMapper) {
- return new GillFieldStateInterpolator<>(newField, newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** {@inheritDoc} */
- @SuppressWarnings("unchecked")
- @Override
- protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
- final T time, final T theta,
- final T thetaH, final T oneMinusThetaH) {
- final T one = time.getField().getOne();
- final T twoTheta = theta.multiply(2);
- final T fourTheta2 = twoTheta.multiply(twoTheta);
- final T coeffDot1 = theta.multiply(twoTheta.subtract(3)).add(1);
- final T cDot23 = twoTheta.multiply(one.subtract(theta));
- final T coeffDot2 = cDot23.multiply(one_minus_inv_sqrt_2);
- final T coeffDot3 = cDot23.multiply(one_plus_inv_sqrt_2);
- final T coeffDot4 = theta.multiply(twoTheta.subtract(1));
- final T[] interpolatedState;
- final T[] interpolatedDerivatives;
- if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
- final T s = thetaH.divide(6.0);
- final T c23 = s.multiply(theta.multiply(6).subtract(fourTheta2));
- final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(9)).add(6));
- final T coeff2 = c23.multiply(one_minus_inv_sqrt_2);
- final T coeff3 = c23.multiply(one_plus_inv_sqrt_2);
- final T coeff4 = s.multiply(fourTheta2.subtract(theta.multiply(3)));
- interpolatedState = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
- } else {
- final T s = oneMinusThetaH.divide(-6.0);
- final T c23 = s.multiply(twoTheta.add(2).subtract(fourTheta2));
- final T coeff1 = s.multiply(fourTheta2.subtract(theta.multiply(5)).add(1));
- final T coeff2 = c23.multiply(one_minus_inv_sqrt_2);
- final T coeff3 = c23.multiply(one_plus_inv_sqrt_2);
- final T coeff4 = s.multiply(fourTheta2.add(theta).add(1));
- interpolatedState = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }