ClassicalRungeKuttaStateInterpolator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.ClassicalRungeKuttaIntegrator;
- /**
- * This class implements a step interpolator for the classical fourth
- * order Runge-Kutta integrator.
- *
- * <p>This interpolator allows to compute dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme :</p>
- * <ul>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>)
- * + θ (h/6) [ (6 - 9 θ + 4 θ<sup>2</sup>) y'<sub>1</sub>
- * + ( 6 θ - 4 θ<sup>2</sup>) (y'<sub>2</sub> + y'<sub>3</sub>)
- * + ( -3 θ + 4 θ<sup>2</sup>) y'<sub>4</sub>
- * ]
- * </li>
- * <li>Using reference point at step end:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h)
- * + (1 - θ) (h/6) [ (-4 θ^2 + 5 θ - 1) y'<sub>1</sub>
- * +(4 θ^2 - 2 θ - 2) (y'<sub>2</sub> + y'<sub>3</sub>)
- * -(4 θ^2 + θ + 1) y'<sub>4</sub>
- * ]
- * </li>
- * </ul>
- *
- * <p>where θ belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
- * evaluations of the derivatives already computed during the
- * step.</p>
- *
- * @see ClassicalRungeKuttaIntegrator
- */
- public class ClassicalRungeKuttaStateInterpolator extends RungeKuttaStateInterpolator {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20160328L;
- /** Simple constructor.
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public ClassicalRungeKuttaStateInterpolator(final boolean forward,
- final double[][] yDotK,
- final ODEStateAndDerivative globalPreviousState,
- final ODEStateAndDerivative globalCurrentState,
- final ODEStateAndDerivative softPreviousState,
- final ODEStateAndDerivative softCurrentState,
- final EquationsMapper mapper) {
- super(forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper);
- }
- /** {@inheritDoc} */
- @Override
- protected ClassicalRungeKuttaStateInterpolator create(final boolean newForward, final double[][] newYDotK,
- final ODEStateAndDerivative newGlobalPreviousState,
- final ODEStateAndDerivative newGlobalCurrentState,
- final ODEStateAndDerivative newSoftPreviousState,
- final ODEStateAndDerivative newSoftCurrentState,
- final EquationsMapper newMapper) {
- return new ClassicalRungeKuttaStateInterpolator(newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** {@inheritDoc} */
- @Override
- protected ODEStateAndDerivative computeInterpolatedStateAndDerivatives(final EquationsMapper mapper,
- final double time, final double theta,
- final double thetaH, final double oneMinusThetaH) {
- final double oneMinusTheta = 1.0 - theta;
- final double oneMinus2Theta = 1.0 - theta * 2.0;
- final double coeffDot1 = oneMinusTheta * oneMinus2Theta;
- final double coeffDot23 = theta * oneMinusTheta * 2;
- final double coeffDot4 = -theta * oneMinus2Theta;
- final double[] interpolatedState;
- final double[] interpolatedDerivatives;
- if (getGlobalPreviousState() != null && theta <= 0.5) {
- final double fourTheta2 = theta * theta * 4;
- final double s = thetaH / 6.0;
- final double coeff1 = s * (fourTheta2 - theta * 9 + 6);
- final double coeff23 = s * (theta * 6 - fourTheta2);
- final double coeff4 = s * (fourTheta2 - theta * 3);
- interpolatedState = previousStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
- } else {
- final double fourTheta = theta * 4;
- final double s = oneMinusThetaH / 6.0;
- final double coeff1 = s * (theta * (-fourTheta + 5) - 1);
- final double coeff23 = s * (theta * ( fourTheta - 2) - 2);
- final double coeff4 = s * (theta * (-fourTheta - 1) - 1);
- interpolatedState = currentStateLinearCombination(coeff1, coeff23, coeff23, coeff4);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot23, coeffDot23, coeffDot4);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }