FastSineTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.transform;
- import java.io.Serializable;
- import org.hipparchus.analysis.FunctionUtils;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.complex.Complex;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.ArithmeticUtils;
- import org.hipparchus.util.FastMath;
- /**
- * Implements the Fast Sine Transform for transformation of one-dimensional real
- * data sets. For reference, see James S. Walker, <em>Fast Fourier
- * Transforms</em>, chapter 3 (ISBN 0849371635).
- * <p>
- * There are several variants of the discrete sine transform. The present
- * implementation corresponds to DST-I, with various normalization conventions,
- * which are specified by the parameter {@link DstNormalization}.
- * <strong>It should be noted that regardless to the convention, the first
- * element of the dataset to be transformed must be zero.</strong>
- * <p>
- * DST-I is equivalent to DFT of an <em>odd extension</em> of the data series.
- * More precisely, if x<sub>0</sub>, …, x<sub>N-1</sub> is the data set
- * to be sine transformed, the extended data set x<sub>0</sub><sup>#</sup>,
- * …, x<sub>2N-1</sub><sup>#</sup> is defined as follows
- * <ul>
- * <li>x<sub>0</sub><sup>#</sup> = x<sub>0</sub> = 0,</li>
- * <li>x<sub>k</sub><sup>#</sup> = x<sub>k</sub> if 1 ≤ k < N,</li>
- * <li>x<sub>N</sub><sup>#</sup> = 0,</li>
- * <li>x<sub>k</sub><sup>#</sup> = -x<sub>2N-k</sub> if N + 1 ≤ k <
- * 2N.</li>
- * </ul>
- * <p>
- * Then, the standard DST-I y<sub>0</sub>, …, y<sub>N-1</sub> of the real
- * data set x<sub>0</sub>, …, x<sub>N-1</sub> is equal to <em>half</em>
- * of i (the pure imaginary number) times the N first elements of the DFT of the
- * extended data set x<sub>0</sub><sup>#</sup>, …,
- * x<sub>2N-1</sub><sup>#</sup> <br>
- * y<sub>n</sub> = (i / 2) ∑<sub>k=0</sub><sup>2N-1</sup>
- * x<sub>k</sub><sup>#</sup> exp[-2πi nk / (2N)]
- * k = 0, …, N-1.
- * <p>
- * The present implementation of the discrete sine transform as a fast sine
- * transform requires the length of the data to be a power of two. Besides,
- * it implicitly assumes that the sampled function is odd. In particular, the
- * first element of the data set must be 0, which is enforced in
- * {@link #transform(UnivariateFunction, double, double, int, TransformType)},
- * after sampling.
- *
- */
- public class FastSineTransformer implements RealTransformer, Serializable {
- /** Serializable version identifier. */
- static final long serialVersionUID = 20120211L;
- /** The type of DST to be performed. */
- private final DstNormalization normalization;
- /**
- * Creates a new instance of this class, with various normalization conventions.
- *
- * @param normalization the type of normalization to be applied to the transformed data
- */
- public FastSineTransformer(final DstNormalization normalization) {
- this.normalization = normalization;
- }
- /**
- * {@inheritDoc}
- *
- * The first element of the specified data set is required to be {@code 0}.
- *
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two, or the first element of the data array is not zero
- */
- @Override
- public double[] transform(final double[] f, final TransformType type) {
- if (normalization == DstNormalization.ORTHOGONAL_DST_I) {
- final double s = FastMath.sqrt(2.0 / f.length);
- return TransformUtils.scaleArray(fst(f), s);
- }
- if (type == TransformType.FORWARD) {
- return fst(f);
- }
- final double s = 2.0 / f.length;
- return TransformUtils.scaleArray(fst(f), s);
- }
- /**
- * {@inheritDoc}
- *
- * This implementation enforces {@code f(x) = 0.0} at {@code x = 0.0}.
- *
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the lower bound is greater than, or equal to the upper bound
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the number of sample points is negative
- * @throws MathIllegalArgumentException if the number of sample points is not a power of two
- */
- @Override
- public double[] transform(final UnivariateFunction f,
- final double min, final double max, final int n,
- final TransformType type) {
- final double[] data = FunctionUtils.sample(f, min, max, n);
- data[0] = 0.0;
- return transform(data, type);
- }
- /**
- * Perform the FST algorithm (including inverse). The first element of the
- * data set is required to be {@code 0}.
- *
- * @param f the real data array to be transformed
- * @return the real transformed array
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two, or the first element of the data array is not zero
- */
- protected double[] fst(double[] f) throws MathIllegalArgumentException {
- final double[] transformed = new double[f.length];
- if (!ArithmeticUtils.isPowerOfTwo(f.length)) {
- throw new MathIllegalArgumentException(
- LocalizedFFTFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING,
- f.length);
- }
- if (f[0] != 0.0) {
- throw new MathIllegalArgumentException(
- LocalizedFFTFormats.FIRST_ELEMENT_NOT_ZERO,
- f[0]);
- }
- final int n = f.length;
- if (n == 1) { // trivial case
- transformed[0] = 0.0;
- return transformed;
- }
- // construct a new array and perform FFT on it
- final double[] x = new double[n];
- x[0] = 0.0;
- x[n >> 1] = 2.0 * f[n >> 1];
- for (int i = 1; i < (n >> 1); i++) {
- final double a = FastMath.sin(i * FastMath.PI / n) * (f[i] + f[n - i]);
- final double b = 0.5 * (f[i] - f[n - i]);
- x[i] = a + b;
- x[n - i] = a - b;
- }
- FastFourierTransformer transformer;
- transformer = new FastFourierTransformer(DftNormalization.STANDARD);
- Complex[] y = transformer.transform(x, TransformType.FORWARD);
- // reconstruct the FST result for the original array
- transformed[0] = 0.0;
- transformed[1] = 0.5 * y[0].getReal();
- for (int i = 1; i < (n >> 1); i++) {
- transformed[2 * i] = -y[i].getImaginary();
- transformed[2 * i + 1] = y[i].getReal() + transformed[2 * i - 1];
- }
- return transformed;
- }
- }