FastHadamardTransformer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.transform;
- import java.io.Serializable;
- import org.hipparchus.analysis.FunctionUtils;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.ArithmeticUtils;
- /**
- * Implements the <a href="http://www.archive.chipcenter.com/dsp/DSP000517F1.html">Fast Hadamard Transform</a> (FHT).
- * Transformation of an input vector x to the output vector y.
- * <p>
- * In addition to transformation of real vectors, the Hadamard transform can
- * transform integer vectors into integer vectors. However, this integer transform
- * cannot be inverted directly. Due to a scaling factor it may lead to rational results.
- * As an example, the inverse transform of integer vector (0, 1, 0, 1) is rational
- * vector (1/2, -1/2, 0, 0).
- *
- */
- public class FastHadamardTransformer implements RealTransformer, Serializable {
- /** Serializable version identifier. */
- static final long serialVersionUID = 20120211L;
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public FastHadamardTransformer() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /**
- * {@inheritDoc}
- *
- * @throws MathIllegalArgumentException if the length of the data array is
- * not a power of two
- */
- @Override
- public double[] transform(final double[] f, final TransformType type) {
- if (type == TransformType.FORWARD) {
- return fht(f);
- }
- return TransformUtils.scaleArray(fht(f), 1.0 / f.length);
- }
- /**
- * {@inheritDoc}
- *
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the lower bound is greater than, or equal to the upper bound
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the number of sample points is negative
- * @throws MathIllegalArgumentException if the number of sample points is not a power of two
- */
- @Override
- public double[] transform(final UnivariateFunction f,
- final double min, final double max, final int n,
- final TransformType type) {
- return transform(FunctionUtils.sample(f, min, max, n), type);
- }
- /**
- * Returns the forward transform of the specified integer data set.The
- * integer transform cannot be inverted directly, due to a scaling factor
- * which may lead to double results.
- *
- * @param f the integer data array to be transformed (signal)
- * @return the integer transformed array (spectrum)
- * @throws MathIllegalArgumentException if the length of the data array is not a power of two
- */
- public int[] transform(final int[] f) {
- return fht(f);
- }
- /**
- * The FHT (Fast Hadamard Transformation) which uses only subtraction and
- * addition. Requires {@code N * log2(N) = n * 2^n} additions.
- *
- * <ol>
- * <li><b>x</b> is the input vector to be transformed,</li>
- * <li><b>y</b> is the output vector (Fast Hadamard transform of <b>x</b>),</li>
- * <li>a and b are helper rows.</li>
- * </ol>
- * <table border="1">
- * <caption>Short Table of manual calculation for N=8</caption>
- * <tbody>
- * <tr>
- * <th>x</th>
- * <th>a</th>
- * <th>b</th>
- * <th>y</th>
- * </tr>
- * <tr>
- * <th>x<sub>0</sub></th>
- * <td>a<sub>0</sub> = x<sub>0</sub> + x<sub>1</sub></td>
- * <td>b<sub>0</sub> = a<sub>0</sub> + a<sub>1</sub></td>
- * <td>y<sub>0</sub> = b<sub>0</sub >+ b<sub>1</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>1</sub></th>
- * <td>a<sub>1</sub> = x<sub>2</sub> + x<sub>3</sub></td>
- * <td>b<sub>0</sub> = a<sub>2</sub> + a<sub>3</sub></td>
- * <td>y<sub>0</sub> = b<sub>2</sub> + b<sub>3</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>2</sub></th>
- * <td>a<sub>2</sub> = x<sub>4</sub> + x<sub>5</sub></td>
- * <td>b<sub>0</sub> = a<sub>4</sub> + a<sub>5</sub></td>
- * <td>y<sub>0</sub> = b<sub>4</sub> + b<sub>5</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>3</sub></th>
- * <td>a<sub>3</sub> = x<sub>6</sub> + x<sub>7</sub></td>
- * <td>b<sub>0</sub> = a<sub>6</sub> + a<sub>7</sub></td>
- * <td>y<sub>0</sub> = b<sub>6</sub> + b<sub>7</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>4</sub></th>
- * <td>a<sub>0</sub> = x<sub>0</sub> - x<sub>1</sub></td>
- * <td>b<sub>0</sub> = a<sub>0</sub> - a<sub>1</sub></td>
- * <td>y<sub>0</sub> = b<sub>0</sub> - b<sub>1</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>5</sub></th>
- * <td>a<sub>1</sub> = x<sub>2</sub> - x<sub>3</sub></td>
- * <td>b<sub>0</sub> = a<sub>2</sub> - a<sub>3</sub></td>
- * <td>y<sub>0</sub> = b<sub>2</sub> - b<sub>3</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>6</sub></th>
- * <td>a<sub>2</sub> = x<sub>4</sub> - x<sub>5</sub></td>
- * <td>b<sub>0</sub> = a<sub>4</sub> - a<sub>5</sub></td>
- * <td>y<sub>0</sub> = b<sub>4</sub> - b<sub>5</sub></td>
- * </tr>
- * <tr>
- * <th>x<sub>7</sub></th>
- * <td>a<sub>3</sub> = x<sub>6</sub> - x<sub>7</sub></td>
- * <td>b<sub>0</sub> = a<sub>6</sub> - a<sub>7</sub></td>
- * <td>y<sub>0</sub> = b<sub>6</sub> - b<sub>7</sub></td>
- * </tr>
- * </tbody>
- * </table>
- *
- * <p>How it works</p>
- * <ol>
- * <li>Construct a matrix with {@code N} rows and {@code n + 1} columns,
- * {@code hadm[n+1][N]}.<br>
- * <em>(If I use [x][y] it always means [row-offset][column-offset] of a
- * Matrix with n rows and m columns. Its entries go from M[0][0]
- * to M[n][N])</em></li>
- * <li>Place the input vector {@code x[N]} in the first column of the
- * matrix {@code hadm}.</li>
- * <li>The entries of the submatrix {@code D_top} are calculated as follows
- * <ul>
- * <li>{@code D_top} goes from entry {@code [0][1]} to
- * {@code [N / 2 - 1][n + 1]},</li>
- * <li>the columns of {@code D_top} are the pairwise mutually
- * exclusive sums of the previous column.</li>
- * </ul>
- * </li>
- * <li>The entries of the submatrix {@code D_bottom} are calculated as
- * follows
- * <ul>
- * <li>{@code D_bottom} goes from entry {@code [N / 2][1]} to
- * {@code [N][n + 1]},</li>
- * <li>the columns of {@code D_bottom} are the pairwise differences
- * of the previous column.</li>
- * </ul>
- * </li>
- * <li>The consputation of {@code D_top} and {@code D_bottom} are best
- * understood with the above example (for {@code N = 8}).
- * <li>The output vector {@code y} is now in the last column of
- * {@code hadm}.</li>
- * <li><em>Algorithm from <a href="http://www.archive.chipcenter.com/dsp/DSP000517F1.html">chipcenter</a>.</em></li>
- * </ol>
- * <table border="1" >
- * <caption>visually</caption>
- * <tbody>
- * <tr>
- * <td></td><th>0</th><th>1</th><th>2</th><th>3</th>
- * <th>…</th>
- * <th>n + 1</th>
- * </tr>
- * <tr>
- * <th>0</th>
- * <td>x<sub>0</sub></td>
- * <td colspan="5" rowspan="5" >
- * ↑<br>
- * ← D<sub>top</sub> →<br>
- * ↓
- * </td>
- * </tr>
- * <tr><th>1</th><td>x<sub>1</sub></td></tr>
- * <tr><th>2</th><td>x<sub>2</sub></td></tr>
- * <tr><th>…</th><td>…</td></tr>
- * <tr><th>N / 2 - 1</th><td>x<sub>N/2-1</sub></td></tr>
- * <tr>
- * <th>N / 2</th>
- * <td>x<sub>N/2</sub></td>
- * <td colspan="5" rowspan="5" >
- * ↑<br>
- * ← D<sub>bottom</sub> →<br>
- * ↓
- * </td>
- * </tr>
- * <tr><th>N / 2 + 1</th><td>x<sub>N/2+1</sub></td></tr>
- * <tr><th>N / 2 + 2</th><td>x<sub>N/2+2</sub></td></tr>
- * <tr><th>…</th><td>…</td></tr>
- * <tr><th>N</th><td>x<sub>N</sub></td></tr>
- * </tbody>
- * </table>
- *
- * @param x the real data array to be transformed
- * @return the real transformed array, {@code y}
- * @throws MathIllegalArgumentException if the length of the data array is not a power of two
- */
- protected double[] fht(double[] x) throws MathIllegalArgumentException {
- final int n = x.length;
- final int halfN = n / 2;
- if (!ArithmeticUtils.isPowerOfTwo(n)) {
- throw new MathIllegalArgumentException(LocalizedFFTFormats.NOT_POWER_OF_TWO,
- n);
- }
- /*
- * Instead of creating a matrix with p+1 columns and n rows, we use two
- * one dimension arrays which we are used in an alternating way.
- */
- double[] yPrevious = new double[n];
- double[] yCurrent = x.clone();
- // iterate from left to right (column)
- for (int j = 1; j < n; j <<= 1) {
- // switch columns
- final double[] yTmp = yCurrent;
- yCurrent = yPrevious;
- yPrevious = yTmp;
- // iterate from top to bottom (row)
- for (int i = 0; i < halfN; ++i) {
- // Dtop: the top part works with addition
- final int twoI = 2 * i;
- yCurrent[i] = yPrevious[twoI] + yPrevious[twoI + 1];
- }
- for (int i = halfN; i < n; ++i) {
- // Dbottom: the bottom part works with subtraction
- final int twoI = 2 * i;
- yCurrent[i] = yPrevious[twoI - n] - yPrevious[twoI - n + 1];
- }
- }
- return yCurrent;
- }
- /**
- * Returns the forward transform of the specified integer data set. The FHT
- * (Fast Hadamard Transform) uses only subtraction and addition.
- *
- * @param x the integer data array to be transformed
- * @return the integer transformed array, {@code y}
- * @throws MathIllegalArgumentException if the length of the data array is not a power of two
- */
- protected int[] fht(int[] x) throws MathIllegalArgumentException {
- final int n = x.length;
- final int halfN = n / 2;
- if (!ArithmeticUtils.isPowerOfTwo(n)) {
- throw new MathIllegalArgumentException(LocalizedFFTFormats.NOT_POWER_OF_TWO,
- n);
- }
- /*
- * Instead of creating a matrix with p+1 columns and n rows, we use two
- * one dimension arrays which we are used in an alternating way.
- */
- int[] yPrevious = new int[n];
- int[] yCurrent = x.clone();
- // iterate from left to right (column)
- for (int j = 1; j < n; j <<= 1) {
- // switch columns
- final int[] yTmp = yCurrent;
- yCurrent = yPrevious;
- yPrevious = yTmp;
- // iterate from top to bottom (row)
- for (int i = 0; i < halfN; ++i) {
- // Dtop: the top part works with addition
- final int twoI = 2 * i;
- yCurrent[i] = yPrevious[twoI] + yPrevious[twoI + 1];
- }
- for (int i = halfN; i < n; ++i) {
- // Dbottom: the bottom part works with subtraction
- final int twoI = 2 * i;
- yCurrent[i] = yPrevious[twoI - n] - yPrevious[twoI - n + 1];
- }
- }
- // return the last computed output vector y
- return yCurrent;
- }
- }