StatUtils.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.stat;
- import java.util.Arrays;
- import java.util.List;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.stat.descriptive.DescriptiveStatistics;
- import org.hipparchus.stat.descriptive.UnivariateStatistic;
- import org.hipparchus.stat.descriptive.moment.GeometricMean;
- import org.hipparchus.stat.descriptive.moment.Mean;
- import org.hipparchus.stat.descriptive.moment.Variance;
- import org.hipparchus.stat.descriptive.rank.Max;
- import org.hipparchus.stat.descriptive.rank.Min;
- import org.hipparchus.stat.descriptive.rank.Percentile;
- import org.hipparchus.stat.descriptive.summary.Product;
- import org.hipparchus.stat.descriptive.summary.Sum;
- import org.hipparchus.stat.descriptive.summary.SumOfLogs;
- import org.hipparchus.stat.descriptive.summary.SumOfSquares;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /**
- * StatUtils provides static methods for computing statistics based on data
- * stored in double[] arrays.
- */
- public final class StatUtils {
- /** sum */
- private static final UnivariateStatistic SUM = new Sum();
- /** sumSq */
- private static final UnivariateStatistic SUM_OF_SQUARES = new SumOfSquares();
- /** prod */
- private static final UnivariateStatistic PRODUCT = new Product();
- /** sumLog */
- private static final UnivariateStatistic SUM_OF_LOGS = new SumOfLogs();
- /** min */
- private static final UnivariateStatistic MIN = new Min();
- /** max */
- private static final UnivariateStatistic MAX = new Max();
- /** mean */
- private static final UnivariateStatistic MEAN = new Mean();
- /** variance */
- private static final Variance VARIANCE = new Variance();
- /** percentile */
- private static final Percentile PERCENTILE = new Percentile();
- /** geometric mean */
- private static final GeometricMean GEOMETRIC_MEAN = new GeometricMean();
- /**
- * Private Constructor
- */
- private StatUtils() {
- }
- /**
- * Returns the sum of the values in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the input array is null.
- *
- * @param values array of values to sum
- * @return the sum of the values or <code>Double.NaN</code> if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double sum(final double... values) throws MathIllegalArgumentException {
- return SUM.evaluate(values);
- }
- /**
- * Returns the sum of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the sum of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double sum(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return SUM.evaluate(values, begin, length);
- }
- /**
- * Returns the sum of the squares of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- *
- * @param values input array
- * @return the sum of the squared values or <code>Double.NaN</code> if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double sumSq(final double... values) throws MathIllegalArgumentException {
- return SUM_OF_SQUARES.evaluate(values);
- }
- /**
- * Returns the sum of the squares of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the sum of the squares of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double sumSq(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return SUM_OF_SQUARES.evaluate(values, begin, length);
- }
- /**
- * Returns the product of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @return the product of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double product(final double... values) throws MathIllegalArgumentException {
- return PRODUCT.evaluate(values);
- }
- /**
- * Returns the product of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the product of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double product(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return PRODUCT.evaluate(values, begin, length);
- }
- /**
- * Returns the sum of the natural logs of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.summary.SumOfLogs}.
- *
- * @param values the input array
- * @return the sum of the natural logs of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double sumLog(final double... values) throws MathIllegalArgumentException {
- return SUM_OF_LOGS.evaluate(values);
- }
- /**
- * Returns the sum of the natural logs of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.summary.SumOfLogs}.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the sum of the natural logs of the values or Double.NaN if
- * length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double sumLog(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return SUM_OF_LOGS.evaluate(values, begin, length);
- }
- /**
- * Returns the arithmetic mean of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Mean} for
- * details on the computing algorithm.
- *
- * @param values the input array
- * @return the mean of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double mean(final double... values) throws MathIllegalArgumentException {
- return MEAN.evaluate(values);
- }
- /**
- * Returns the arithmetic mean of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Mean Mean} for
- * details on the computing algorithm.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the mean of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double mean(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return MEAN.evaluate(values, begin, length);
- }
- /**
- * Returns the geometric mean of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.GeometricMean GeometricMean}
- * for details on the computing algorithm.
- *
- * @param values the input array
- * @return the geometric mean of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double geometricMean(final double... values) throws MathIllegalArgumentException {
- return GEOMETRIC_MEAN.evaluate(values);
- }
- /**
- * Returns the geometric mean of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * Throws <code>IllegalArgumentException</code> if the array is null.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.GeometricMean GeometricMean}
- * for details on the computing algorithm.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the geometric mean of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double geometricMean(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return GEOMETRIC_MEAN.evaluate(values, begin, length);
- }
- /**
- * Returns the variance of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * This method returns the bias-corrected sample variance (using {@code n - 1} in
- * the denominator). Use {@link #populationVariance(double[])} for the non-bias-corrected
- * population variance.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @return the variance of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double variance(final double... values) throws MathIllegalArgumentException {
- return VARIANCE.evaluate(values);
- }
- /**
- * Returns the variance of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * This method returns the bias-corrected sample variance (using {@code n - 1} in
- * the denominator). Use {@link #populationVariance(double[], int, int)} for the non-bias-corrected
- * population variance.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or the
- * array index parameters are not valid.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the variance of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double variance(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return VARIANCE.evaluate(values, begin, length);
- }
- /**
- * Returns the variance of the entries in the specified portion of
- * the input array, using the precomputed mean value. Returns
- * <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * This method returns the bias-corrected sample variance (using {@code n - 1} in
- * the denominator). Use {@link #populationVariance(double[], double, int, int)} for
- * the non-bias-corrected population variance.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method
- * is supplied only to save computation when the mean has already been
- * computed.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or the
- * array index parameters are not valid.
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the variance of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double variance(final double[] values, final double mean, final int begin, final int length)
- throws MathIllegalArgumentException {
- return VARIANCE.evaluate(values, mean, begin, length);
- }
- /**
- * Returns the variance of the entries in the input array, using the
- * precomputed mean value. Returns <code>Double.NaN</code> if the array
- * is empty.
- * <p>
- * This method returns the bias-corrected sample variance (using {@code n - 1} in
- * the denominator). Use {@link #populationVariance(double[], double)} for the
- * non-bias-corrected population variance.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method
- * is supplied only to save computation when the mean has already been
- * computed.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @return the variance of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double variance(final double[] values, final double mean) throws MathIllegalArgumentException {
- return VARIANCE.evaluate(values, mean);
- }
- /**
- * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance">
- * population variance</a> of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the formula and computing algorithm.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @return the population variance of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double populationVariance(final double... values) throws MathIllegalArgumentException {
- return new Variance(false).evaluate(values);
- }
- /**
- * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance">
- * population variance</a> of the entries in the specified portion of
- * the input array, or <code>Double.NaN</code> if the designated subarray
- * is empty.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or the
- * array index parameters are not valid.
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the population variance of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double populationVariance(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return new Variance(false).evaluate(values, begin, length);
- }
- /**
- * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance">
- * population variance</a> of the entries in the specified portion of
- * the input array, using the precomputed mean value. Returns
- * <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method
- * is supplied only to save computation when the mean has already been
- * computed.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or the
- * array index parameters are not valid.
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the population variance of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double populationVariance(final double[] values, final double mean,
- final int begin, final int length)
- throws MathIllegalArgumentException {
- return new Variance(false).evaluate(values, mean, begin, length);
- }
- /**
- * Returns the <a href="http://en.wikibooks.org/wiki/Statistics/Summary/Variance">
- * population variance</a> of the entries in the input array, using the precomputed
- * mean value. Returns <code>Double.NaN</code> if the array is empty.
- * <p>
- * See {@link org.hipparchus.stat.descriptive.moment.Variance Variance} for
- * details on the computing algorithm.
- * <p>
- * The formula used assumes that the supplied mean value is the arithmetic
- * mean of the sample data, not a known population parameter. This method is
- * supplied only to save computation when the mean has already been computed.
- * <p>
- * Returns 0 for a single-value (i.e. length = 1) sample.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- *
- * @param values the input array
- * @param mean the precomputed mean value
- * @return the population variance of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double populationVariance(final double[] values, final double mean)
- throws MathIllegalArgumentException {
- return new Variance(false).evaluate(values, mean);
- }
- /**
- * Returns the maximum of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- * </p>
- * <ul>
- * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
- * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
- * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,
- * the result is <code>Double.POSITIVE_INFINITY.</code></li>
- * </ul>
- *
- * @param values the input array
- * @return the maximum of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double max(final double... values) throws MathIllegalArgumentException {
- return MAX.evaluate(values);
- }
- /**
- * Returns the maximum of the entries in the specified portion of the input array,
- * or <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or
- * the array index parameters are not valid.
- * </p>
- * <ul>
- * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
- * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
- * <li>If any of the values equals <code>Double.POSITIVE_INFINITY</code>,
- * the result is <code>Double.POSITIVE_INFINITY.</code></li>
- * </ul>
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the maximum of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double max(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return MAX.evaluate(values, begin, length);
- }
- /**
- * Returns the minimum of the entries in the input array, or
- * <code>Double.NaN</code> if the array is empty.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null.
- * </p>
- * <ul>
- * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
- * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
- * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,
- * the result is <code>Double.NEGATIVE_INFINITY.</code></li>
- * </ul>
- *
- * @param values the input array
- * @return the minimum of the values or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if the array is null
- */
- public static double min(final double... values) throws MathIllegalArgumentException {
- return MIN.evaluate(values);
- }
- /**
- * Returns the minimum of the entries in the specified portion of the input array,
- * or <code>Double.NaN</code> if the designated subarray is empty.
- * <p>
- * Throws <code>MathIllegalArgumentException</code> if the array is null or
- * the array index parameters are not valid.
- * </p>
- * <ul>
- * <li>The result is <code>NaN</code> iff all values are <code>NaN</code>
- * (i.e. <code>NaN</code> values have no impact on the value of the statistic).</li>
- * <li>If any of the values equals <code>Double.NEGATIVE_INFINITY</code>,
- * the result is <code>Double.NEGATIVE_INFINITY.</code></li>
- * </ul>
- *
- * @param values the input array
- * @param begin index of the first array element to include
- * @param length the number of elements to include
- * @return the minimum of the values or Double.NaN if length = 0
- * @throws MathIllegalArgumentException if the array is null or the array index
- * parameters are not valid
- */
- public static double min(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- return MIN.evaluate(values, begin, length);
- }
- /**
- * Returns an estimate of the <code>p</code>th percentile of the values
- * in the <code>values</code> array.
- * <ul>
- * <li>Returns <code>Double.NaN</code> if <code>values</code> has length
- * <code>0</code></li>
- * <li>Returns (for any value of <code>p</code>) <code>values[0]</code>
- * if <code>values</code> has length <code>1</code></li>
- * <li>Throws <code>IllegalArgumentException</code> if <code>values</code>
- * is null or p is not a valid quantile value (p must be greater than 0
- * and less than or equal to 100)</li>
- * </ul>
- * <p>
- * See {@link org.hipparchus.stat.descriptive.rank.Percentile Percentile}
- * for a description of the percentile estimation algorithm used.
- *
- * @param values input array of values
- * @param p the percentile value to compute
- * @return the percentile value or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if <code>values</code> is null or p is invalid
- */
- public static double percentile(final double[] values, final double p) throws MathIllegalArgumentException {
- return PERCENTILE.evaluate(values,p);
- }
- /**
- * Returns an estimate of the <code>p</code>th percentile of the values
- * in the <code>values</code> array, starting with the element in (0-based)
- * position <code>begin</code> in the array and including <code>length</code>
- * values.
- * <ul>
- * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li>
- * <li>Returns (for any value of <code>p</code>) <code>values[begin]</code>
- * if <code>length = 1 </code></li>
- * <li>Throws <code>MathIllegalArgumentException</code> if <code>values</code>
- * is null, <code>begin</code> or <code>length</code> is invalid, or
- * <code>p</code> is not a valid quantile value (p must be greater than 0
- * and less than or equal to 100)</li>
- * </ul>
- * <p>
- * See {@link org.hipparchus.stat.descriptive.rank.Percentile Percentile}
- * for a description of the percentile estimation algorithm used.
- *
- * @param values array of input values
- * @param p the percentile to compute
- * @param begin the first (0-based) element to include in the computation
- * @param length the number of array elements to include
- * @return the percentile value
- * @throws MathIllegalArgumentException if the parameters are not valid or the input array is null
- */
- public static double percentile(final double[] values, final int begin, final int length, final double p)
- throws MathIllegalArgumentException {
- return PERCENTILE.evaluate(values, begin, length, p);
- }
- /**
- * Returns the sum of the (signed) differences between corresponding elements of the
- * input arrays -- i.e., sum(sample1[i] - sample2[i]).
- *
- * @param sample1 the first array
- * @param sample2 the second array
- * @return sum of paired differences
- * @throws MathIllegalArgumentException if the arrays do not have the same (positive) length.
- * @throws MathIllegalArgumentException if the sample arrays are empty.
- */
- public static double sumDifference(final double[] sample1, final double[] sample2)
- throws MathIllegalArgumentException {
- int n = sample1.length;
- MathArrays.checkEqualLength(sample1, sample2);
- if (n <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DIMENSION);
- }
- double result = 0;
- for (int i = 0; i < n; i++) {
- result += sample1[i] - sample2[i];
- }
- return result;
- }
- /**
- * Returns the mean of the (signed) differences between corresponding elements of the
- * input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length.
- *
- * @param sample1 the first array
- * @param sample2 the second array
- * @return mean of paired differences
- * @throws MathIllegalArgumentException if the arrays do not have the same (positive) length.
- * @throws MathIllegalArgumentException if the sample arrays are empty.
- */
- public static double meanDifference(final double[] sample1, final double[] sample2)
- throws MathIllegalArgumentException {
- return sumDifference(sample1, sample2) / sample1.length;
- }
- /**
- * Returns the variance of the (signed) differences between corresponding elements of the
- * input arrays -- i.e., var(sample1[i] - sample2[i]).
- *
- * @param sample1 the first array
- * @param sample2 the second array
- * @param meanDifference the mean difference between corresponding entries
- * @return variance of paired differences
- * @throws MathIllegalArgumentException if the arrays do not have the same length.
- * @throws MathIllegalArgumentException if the arrays length is less than 2.
- * @see #meanDifference(double[],double[])
- */
- public static double varianceDifference(final double[] sample1, final double[] sample2, double meanDifference)
- throws MathIllegalArgumentException {
- double sum1 = 0d;
- double sum2 = 0d;
- int n = sample1.length;
- MathArrays.checkEqualLength(sample1, sample2);
- if (n < 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- n, 2);
- }
- for (int i = 0; i < n; i++) {
- final double diff = sample1[i] - sample2[i];
- sum1 += (diff - meanDifference) *(diff - meanDifference);
- sum2 += diff - meanDifference;
- }
- return (sum1 - (sum2 * sum2 / n)) / (n - 1);
- }
- /**
- * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1.
- *
- * @param sample Sample to normalize.
- * @return normalized (standardized) sample.
- */
- public static double[] normalize(final double... sample) {
- DescriptiveStatistics stats = new DescriptiveStatistics();
- // Add the data from the series to stats
- for (int i = 0; i < sample.length; i++) {
- stats.addValue(sample[i]);
- }
- // Compute mean and standard deviation
- double mean = stats.getMean();
- double standardDeviation = stats.getStandardDeviation();
- // initialize the standardizedSample, which has the same length as the sample
- double[] standardizedSample = new double[sample.length];
- for (int i = 0; i < sample.length; i++) {
- // z = (x- mean)/standardDeviation
- standardizedSample[i] = (sample[i] - mean) / standardDeviation;
- }
- return standardizedSample;
- }
- /**
- * Returns the sample mode(s).
- * <p>
- * The mode is the most frequently occurring value in the sample.
- * If there is a unique value with maximum frequency, this value is returned
- * as the only element of the output array. Otherwise, the returned array
- * contains the maximum frequency elements in increasing order.
- * <p>
- * For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17},
- * the returned array will have length two, with 0 in the first element and
- * 5 in the second.
- * <p>
- * NaN values are ignored when computing the mode - i.e., NaNs will never
- * appear in the output array. If the sample includes only NaNs or has
- * length 0, an empty array is returned.
- *
- * @param sample input data
- * @return array of array of the most frequently occurring element(s) sorted in ascending order.
- * @throws MathIllegalArgumentException if the indices are invalid or the array is null
- */
- public static double[] mode(double... sample) throws MathIllegalArgumentException {
- MathUtils.checkNotNull(sample, LocalizedCoreFormats.INPUT_ARRAY);
- return getMode(sample, 0, sample.length);
- }
- /**
- * Returns the sample mode(s).
- * <p>
- * The mode is the most frequently occurring value in the sample.
- * If there is a unique value with maximum frequency, this value is returned
- * as the only element of the output array. Otherwise, the returned array
- * contains the maximum frequency elements in increasing order.
- * <p>
- * For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17},
- * the returned array will have length two, with 0 in the first element and
- * 5 in the second.
- * <p>
- * NaN values are ignored when computing the mode - i.e., NaNs will never
- * appear in the output array. If the sample includes only NaNs or has
- * length 0, an empty array is returned.
- *
- * @param sample input data
- * @param begin index (0-based) of the first array element to include
- * @param length the number of elements to include
- * @return array of array of the most frequently occurring element(s) sorted in ascending order.
- * @throws MathIllegalArgumentException if the indices are invalid or the array is null
- */
- public static double[] mode(double[] sample, final int begin, final int length) {
- MathUtils.checkNotNull(sample, LocalizedCoreFormats.INPUT_ARRAY);
- if (begin < 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.START_POSITION, Integer.valueOf(begin));
- }
- if (length < 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.LENGTH, Integer.valueOf(length));
- }
- return getMode(sample, begin, length);
- }
- /**
- * Private helper method.
- * Assumes parameters have been validated.
- * @param values input data
- * @param begin index (0-based) of the first array element to include
- * @param length the number of elements to include
- * @return array of array of the most frequently occurring element(s) sorted in ascending order.
- */
- private static double[] getMode(double[] values, final int begin, final int length) {
- // Add the values to the frequency table
- Frequency<Double> freq = new Frequency<>();
- Arrays.stream(values, begin, begin + length)
- .filter(d -> !Double.isNaN(d))
- .forEach(freq::addValue);
- List<Double> list = freq.getMode();
- // Convert the list to an array of primitive double
- return list.stream()
- .mapToDouble(Double::doubleValue)
- .toArray();
- }
- }