WilcoxonSignedRankTest.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.stat.inference;
- import java.util.ArrayList;
- import java.util.List;
- import org.hipparchus.distribution.continuous.NormalDistribution;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.stat.ranking.NaNStrategy;
- import org.hipparchus.stat.ranking.NaturalRanking;
- import org.hipparchus.stat.ranking.TiesStrategy;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /**
- * An implementation of the Wilcoxon signed-rank test.
- *
- * This implementation currently handles only paired (equal length) samples
- * and discards tied pairs from the analysis. The latter behavior differs from
- * the R implementation of wilcox.test and corresponds to the "wilcox"
- * zero_method configurable in scipy.stats.wilcoxon.
- */
- public class WilcoxonSignedRankTest { // NOPMD - this is not a Junit test class, PMD false positive here
- /** Ranking algorithm. */
- private final NaturalRanking naturalRanking;
- /**
- * Create a test instance where NaN's are left in place and ties get the
- * average of applicable ranks.
- */
- public WilcoxonSignedRankTest() {
- naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
- TiesStrategy.AVERAGE);
- }
- /**
- * Create a test instance using the given strategies for NaN's and ties.
- *
- * @param nanStrategy specifies the strategy that should be used for
- * Double.NaN's
- * @param tiesStrategy specifies the strategy that should be used for ties
- */
- public WilcoxonSignedRankTest(final NaNStrategy nanStrategy,
- final TiesStrategy tiesStrategy) {
- naturalRanking = new NaturalRanking(nanStrategy, tiesStrategy);
- }
- /**
- * Ensures that the provided arrays fulfills the assumptions. Also computes
- * and returns the number of tied pairs (i.e., zero differences).
- *
- * @param x first sample
- * @param y second sample
- * @return the number of indices where x[i] == y[i]
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws MathIllegalArgumentException if {@code x} or {@code y} are
- * zero-length
- * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
- * have the same length.
- * @throws MathIllegalArgumentException if all pairs are tied (i.e., if no
- * data remains when tied pairs have been removed.
- */
- private int ensureDataConformance(final double[] x, final double[] y)
- throws MathIllegalArgumentException, NullArgumentException {
- if (x == null || y == null) {
- throw new NullArgumentException();
- }
- if (x.length == 0 || y.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
- }
- MathArrays.checkEqualLength(y, x);
- int nTies = 0;
- for (int i = 0; i < x.length; i++) {
- if (x[i] == y[i]) {
- nTies++;
- }
- }
- if (x.length - nTies == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.INSUFFICIENT_DATA);
- }
- return nTies;
- }
- /**
- * Calculates y[i] - x[i] for all i, discarding ties.
- *
- * @param x first sample
- * @param y second sample
- * @return z = y - x (minus tied values)
- */
- private double[] calculateDifferences(final double[] x, final double[] y) {
- final List<Double> differences = new ArrayList<>();
- for (int i = 0; i < x.length; ++i) {
- if (y[i] != x[i]) {
- differences.add(y[i] - x[i]);
- }
- }
- final int nDiff = differences.size();
- final double[] z = new double[nDiff];
- for (int i = 0; i < nDiff; i++) {
- z[i] = differences.get(i);
- }
- return z;
- }
- /**
- * Calculates |z[i]| for all i
- *
- * @param z sample
- * @return |z|
- * @throws NullArgumentException if {@code z} is {@code null}
- * @throws MathIllegalArgumentException if {@code z} is zero-length.
- */
- private double[] calculateAbsoluteDifferences(final double[] z)
- throws MathIllegalArgumentException, NullArgumentException {
- if (z == null) {
- throw new NullArgumentException();
- }
- if (z.length == 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NO_DATA);
- }
- final double[] zAbs = new double[z.length];
- for (int i = 0; i < z.length; ++i) {
- zAbs[i] = FastMath.abs(z[i]);
- }
- return zAbs;
- }
- /**
- * Computes the
- * <a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
- * Wilcoxon signed ranked statistic</a> comparing means for two related
- * samples or repeated measurements on a single sample.
- * <p>
- * This statistic can be used to perform a Wilcoxon signed ranked test
- * evaluating the null hypothesis that the two related samples or repeated
- * measurements on a single sample have equal mean.
- * </p>
- * <p>
- * Let X<sub>i</sub> denote the i'th individual of the first sample and
- * Y<sub>i</sub> the related i'th individual in the second sample. Let
- * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
- * </p>
- * <p>* <strong>Preconditions</strong>:</p>
- * <ul>
- * <li>The differences Z<sub>i</sub> must be independent.</li>
- * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
- * identical) and is symmetric about a common median.</li>
- * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
- * ordered, so the comparisons greater than, less than, and equal to are
- * meaningful.</li>
- * </ul>
- *
- * @param x the first sample
- * @param y the second sample
- * @return wilcoxonSignedRank statistic (the larger of W+ and W-)
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws MathIllegalArgumentException if {@code x} or {@code y} are
- * zero-length.
- * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
- * have the same length.
- */
- public double wilcoxonSignedRank(final double[] x, final double[] y)
- throws MathIllegalArgumentException, NullArgumentException {
- ensureDataConformance(x, y);
- final double[] z = calculateDifferences(x, y);
- final double[] zAbs = calculateAbsoluteDifferences(z);
- final double[] ranks = naturalRanking.rank(zAbs);
- double Wplus = 0;
- for (int i = 0; i < z.length; ++i) {
- if (z[i] > 0) {
- Wplus += ranks[i];
- }
- }
- final int n = z.length;
- final double Wminus = ((n * (n + 1)) / 2.0) - Wplus;
- return FastMath.max(Wplus, Wminus);
- }
- /**
- * Calculates the p-value associated with a Wilcoxon signed rank statistic
- * by enumerating all possible rank sums and counting the number that exceed
- * the given value.
- *
- * @param stat Wilcoxon signed rank statistic value
- * @param n number of subjects (corresponding to x.length)
- * @return two-sided exact p-value
- */
- private double calculateExactPValue(final double stat, final int n) {
- final int m = 1 << n;
- int largerRankSums = 0;
- for (int i = 0; i < m; ++i) {
- int rankSum = 0;
- // Generate all possible rank sums
- for (int j = 0; j < n; ++j) {
- // (i >> j) & 1 extract i's j-th bit from the right
- if (((i >> j) & 1) == 1) {
- rankSum += j + 1;
- }
- }
- if (rankSum >= stat) {
- ++largerRankSums;
- }
- }
- /*
- * largerRankSums / m gives the one-sided p-value, so it's multiplied
- * with 2 to get the two-sided p-value
- */
- return 2 * ((double) largerRankSums) / m;
- }
- /**
- * Computes an estimate of the (2-sided) p-value using the normal
- * approximation. Includes a continuity correction in computing the
- * correction factor.
- *
- * @param stat Wilcoxon rank sum statistic
- * @param n number of subjects (corresponding to x.length minus any tied ranks)
- * @return two-sided asymptotic p-value
- */
- private double calculateAsymptoticPValue(final double stat, final int n) {
- final double ES = n * (n + 1) / 4.0;
- /*
- * Same as (but saves computations): final double VarW = ((double) (N *
- * (N + 1) * (2*N + 1))) / 24;
- */
- final double VarS = ES * ((2 * n + 1) / 6.0);
- double z = stat - ES;
- final double t = FastMath.signum(z);
- z = (z - t * 0.5) / FastMath.sqrt(VarS);
- // want 2-sided tail probability, so make sure z < 0
- if (z > 0) {
- z = -z;
- }
- final NormalDistribution standardNormal = new NormalDistribution(0, 1);
- return 2 * standardNormal.cumulativeProbability(z);
- }
- /**
- * Returns the <i>observed significance level</i>, or
- * <a href= "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
- * p-value</a>, associated with a
- * <a href="http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test">
- * Wilcoxon signed ranked statistic</a> comparing mean for two related
- * samples or repeated measurements on a single sample.
- * <p>
- * Let X<sub>i</sub> denote the i'th individual of the first sample and
- * Y<sub>i</sub> the related i'th individual in the second sample. Let
- * Z<sub>i</sub> = Y<sub>i</sub> - X<sub>i</sub>.
- * </p>
- * <p>
- * <strong>Preconditions</strong>:</p>
- * <ul>
- * <li>The differences Z<sub>i</sub> must be independent.</li>
- * <li>Each Z<sub>i</sub> comes from a continuous population (they must be
- * identical) and is symmetric about a common median.</li>
- * <li>The values that X<sub>i</sub> and Y<sub>i</sub> represent are
- * ordered, so the comparisons greater than, less than, and equal to are
- * meaningful.</li>
- * </ul>
- * <p><strong>Implementation notes</strong>:</p>
- * <ul>
- * <li>Tied pairs are discarded from the data.</li>
- * <li>When {@code exactPValue} is false, the normal approximation is used
- * to estimate the p-value including a continuity correction factor.
- * {@code wilcoxonSignedRankTest(x, y, true)} should give the same results
- * as {@code wilcox.test(x, y, alternative = "two.sided", mu = 0,
- * paired = TRUE, exact = FALSE, correct = TRUE)} in R (as long as
- * there are no tied pairs in the data).</li>
- * </ul>
- *
- * @param x the first sample
- * @param y the second sample
- * @param exactPValue if the exact p-value is wanted (only works for
- * x.length <= 30, if true and x.length > 30, MathIllegalArgumentException is thrown)
- * @return p-value
- * @throws NullArgumentException if {@code x} or {@code y} are {@code null}.
- * @throws MathIllegalArgumentException if {@code x} or {@code y} are
- * zero-length or for all i, x[i] == y[i]
- * @throws MathIllegalArgumentException if {@code x} and {@code y} do not
- * have the same length.
- * @throws MathIllegalArgumentException if {@code exactPValue} is
- * {@code true} and {@code x.length} > 30
- * @throws MathIllegalStateException if the p-value can not be computed due
- * to a convergence error
- * @throws MathIllegalStateException if the maximum number of iterations is
- * exceeded
- */
- public double wilcoxonSignedRankTest(final double[] x, final double[] y,
- final boolean exactPValue)
- throws MathIllegalArgumentException, NullArgumentException,
- MathIllegalStateException {
- final int nTies = ensureDataConformance(x, y);
- final int n = x.length - nTies;
- final double stat = wilcoxonSignedRank(x, y);
- if (exactPValue && n > 30) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_LARGE,
- n, 30);
- }
- if (exactPValue) {
- return calculateExactPValue(stat, n);
- } else {
- return calculateAsymptoticPValue(stat, n);
- }
- }
- }