VectorialCovariance.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.stat.descriptive.vector;
- import java.io.Serializable;
- import java.util.Arrays;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.linear.MatrixUtils;
- import org.hipparchus.linear.RealMatrix;
- import org.hipparchus.util.MathArrays;
- /**
- * Returns the covariance matrix of the available vectors.
- */
- public class VectorialCovariance implements Serializable {
- /** Serializable version identifier */
- private static final long serialVersionUID = 4118372414238930270L;
- /** Sums for each component. */
- private final double[] sums;
- /** Sums of products for each component. */
- private final double[] productsSums;
- /** Indicator for bias correction. */
- private final boolean isBiasCorrected;
- /** Number of vectors in the sample. */
- private long n;
- /** Constructs a VectorialCovariance.
- * @param dimension vectors dimension
- * @param isBiasCorrected if true, computed the unbiased sample covariance,
- * otherwise computes the biased population covariance
- */
- public VectorialCovariance(int dimension, boolean isBiasCorrected) {
- sums = new double[dimension];
- productsSums = new double[dimension * (dimension + 1) / 2];
- n = 0;
- this.isBiasCorrected = isBiasCorrected;
- }
- /**
- * Add a new vector to the sample.
- * @param v vector to add
- * @throws MathIllegalArgumentException if the vector does not have the right dimension
- */
- public void increment(double[] v) throws MathIllegalArgumentException {
- MathArrays.checkEqualLength(v, sums);
- int k = 0;
- for (int i = 0; i < v.length; ++i) {
- sums[i] += v[i];
- for (int j = 0; j <= i; ++j) {
- productsSums[k++] += v[i] * v[j];
- }
- }
- n++;
- }
- /**
- * Get the covariance matrix.
- * @return covariance matrix
- */
- public RealMatrix getResult() {
- int dimension = sums.length;
- RealMatrix result = MatrixUtils.createRealMatrix(dimension, dimension);
- if (n > 1) {
- double c = 1.0 / (n * (isBiasCorrected ? (n - 1) : n));
- int k = 0;
- for (int i = 0; i < dimension; ++i) {
- for (int j = 0; j <= i; ++j) {
- double e = c * (n * productsSums[k++] - sums[i] * sums[j]);
- result.setEntry(i, j, e);
- result.setEntry(j, i, e);
- }
- }
- }
- return result;
- }
- /**
- * Get the number of vectors in the sample.
- * @return number of vectors in the sample
- */
- public long getN() {
- return n;
- }
- /**
- * Clears the internal state of the Statistic
- */
- public void clear() {
- n = 0;
- Arrays.fill(sums, 0.0);
- Arrays.fill(productsSums, 0.0);
- }
- /** {@inheritDoc} */
- @Override
- public int hashCode() {
- final int prime = 31;
- int result = 1;
- result = prime * result + (isBiasCorrected ? 1231 : 1237);
- result = prime * result + (int) (n ^ (n >>> 32));
- result = prime * result + Arrays.hashCode(productsSums);
- result = prime * result + Arrays.hashCode(sums);
- return result;
- }
- /** {@inheritDoc} */
- @Override
- public boolean equals(Object obj) {
- if (this == obj) {
- return true;
- }
- if (!(obj instanceof VectorialCovariance)) {
- return false;
- }
- VectorialCovariance other = (VectorialCovariance) obj;
- if (isBiasCorrected != other.isBiasCorrected) {
- return false;
- }
- if (n != other.n) {
- return false;
- }
- if (!Arrays.equals(productsSums, other.productsSums)) {
- return false;
- }
- if (!Arrays.equals(sums, other.sums)) {
- return false;
- }
- return true;
- }
- }