Percentile.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.stat.descriptive.rank;
- import java.io.Serializable;
- import java.util.Arrays;
- import java.util.BitSet;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.NullArgumentException;
- import org.hipparchus.stat.LocalizedStatFormats;
- import org.hipparchus.stat.descriptive.AbstractUnivariateStatistic;
- import org.hipparchus.stat.ranking.NaNStrategy;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.KthSelector;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.PivotingStrategy;
- import org.hipparchus.util.Precision;
- /**
- * Provides percentile computation.
- * <p>
- * There are several commonly used methods for estimating percentiles (a.k.a.
- * quantiles) based on sample data. For large samples, the different methods
- * agree closely, but when sample sizes are small, different methods will give
- * significantly different results. The algorithm implemented here works as follows:
- * <ol>
- * <li>Let <code>n</code> be the length of the (sorted) array and
- * <code>0 < p <= 100</code> be the desired percentile.</li>
- * <li>If <code> n = 1 </code> return the unique array element (regardless of
- * the value of <code>p</code>); otherwise </li>
- * <li>Compute the estimated percentile position
- * <code> pos = p * (n + 1) / 100</code> and the difference, <code>d</code>
- * between <code>pos</code> and <code>floor(pos)</code> (i.e. the fractional
- * part of <code>pos</code>).</li>
- * <li> If <code>pos < 1</code> return the smallest element in the array.</li>
- * <li> Else if <code>pos >= n</code> return the largest element in the array.</li>
- * <li> Else let <code>lower</code> be the element in position
- * <code>floor(pos)</code> in the array and let <code>upper</code> be the
- * next element in the array. Return <code>lower + d * (upper - lower)</code>
- * </li>
- * </ol>
- * <p>
- * To compute percentiles, the data must be at least partially ordered. Input
- * arrays are copied and recursively partitioned using an ordering definition.
- * The ordering used by <code>Arrays.sort(double[])</code> is the one determined
- * by {@link java.lang.Double#compareTo(Double)}. This ordering makes
- * <code>Double.NaN</code> larger than any other value (including
- * <code>Double.POSITIVE_INFINITY</code>). Therefore, for example, the median
- * (50th percentile) of
- * <code>{0, 1, 2, 3, 4, Double.NaN}</code> evaluates to <code>2.5.</code>
- * <p>
- * Since percentile estimation usually involves interpolation between array
- * elements, arrays containing <code>NaN</code> or infinite values will often
- * result in <code>NaN</code> or infinite values returned.
- * <p>
- * Further, to include different estimation types such as R1, R2 as mentioned in
- * <a href="http://en.wikipedia.org/wiki/Quantile">Quantile page(wikipedia)</a>,
- * a type specific NaN handling strategy is used to closely match with the
- * typically observed results from popular tools like R(R1-R9), Excel(R7).
- * <p>
- * Percentile uses only selection instead of complete sorting and caches selection
- * algorithm state between calls to the various {@code evaluate} methods. This
- * greatly improves efficiency, both for a single percentile and multiple percentile
- * computations. To maximize performance when multiple percentiles are computed
- * based on the same data, users should set the data array once using either one
- * of the {@link #evaluate(double[], double)} or {@link #setData(double[])} methods
- * and thereafter {@link #evaluate(double)} with just the percentile provided.
- * <p>
- * <strong>Note that this implementation is not synchronized.</strong> If
- * multiple threads access an instance of this class concurrently, and at least
- * one of the threads invokes the <code>increment()</code> or
- * <code>clear()</code> method, it must be synchronized externally.
- */
- public class Percentile extends AbstractUnivariateStatistic implements Serializable {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20150412L;
- /** Maximum number of partitioning pivots cached (each level double the number of pivots). */
- private static final int MAX_CACHED_LEVELS = 10;
- /** Maximum number of cached pivots in the pivots cached array */
- private static final int PIVOTS_HEAP_LENGTH = 0x1 << MAX_CACHED_LEVELS - 1;
- /** Default KthSelector used with default pivoting strategy */
- private final KthSelector kthSelector;
- /** Any of the {@link EstimationType}s such as {@link EstimationType#LEGACY CM} can be used. */
- private final EstimationType estimationType;
- /** NaN Handling of the input as defined by {@link NaNStrategy} */
- private final NaNStrategy nanStrategy;
- /**
- * Determines what percentile is computed when evaluate() is activated
- * with no quantile argument.
- */
- private double quantile;
- /** Cached pivots. */
- private int[] cachedPivots;
- /**
- * Constructs a Percentile with the following defaults.
- * <ul>
- * <li>default quantile: 50.0, can be reset with {@link #setQuantile(double)}</li>
- * <li>default estimation type: {@link EstimationType#LEGACY},
- * can be reset with {@link #withEstimationType(EstimationType)}</li>
- * <li>default NaN strategy: {@link NaNStrategy#REMOVED},
- * can be reset with {@link #withNaNStrategy(NaNStrategy)}</li>
- * <li>a KthSelector that makes use of {@link PivotingStrategy#MEDIAN_OF_3},
- * can be reset with {@link #withKthSelector(KthSelector)}</li>
- * </ul>
- */
- public Percentile() {
- // No try-catch or advertised exception here - arg is valid
- this(50.0);
- }
- /**
- * Constructs a Percentile with the specific quantile value and the following
- * <ul>
- * <li>default method type: {@link EstimationType#LEGACY}</li>
- * <li>default NaN strategy: {@link NaNStrategy#REMOVED}</li>
- * <li>a Kth Selector : {@link KthSelector}</li>
- * </ul>
- * @param quantile the quantile
- * @throws MathIllegalArgumentException if p is not greater than 0 and less
- * than or equal to 100
- */
- public Percentile(final double quantile) throws MathIllegalArgumentException {
- this(quantile, EstimationType.LEGACY, NaNStrategy.REMOVED,
- new KthSelector(PivotingStrategy.MEDIAN_OF_3));
- }
- /**
- * Copy constructor, creates a new {@code Percentile} identical
- * to the {@code original}
- *
- * @param original the {@code Percentile} instance to copy
- * @throws NullArgumentException if original is null
- */
- public Percentile(final Percentile original) throws NullArgumentException {
- super(original);
- estimationType = original.getEstimationType();
- nanStrategy = original.getNaNStrategy();
- kthSelector = original.getKthSelector();
- setData(original.getDataRef());
- if (original.cachedPivots != null) {
- System.arraycopy(original.cachedPivots, 0, cachedPivots, 0, original.cachedPivots.length);
- }
- setQuantile(original.quantile);
- }
- /**
- * Constructs a Percentile with the specific quantile value,
- * {@link EstimationType}, {@link NaNStrategy} and {@link KthSelector}.
- *
- * @param quantile the quantile to be computed
- * @param estimationType one of the percentile {@link EstimationType estimation types}
- * @param nanStrategy one of {@link NaNStrategy} to handle with NaNs
- * @param kthSelector a {@link KthSelector} to use for pivoting during search
- * @throws MathIllegalArgumentException if p is not within (0,100]
- * @throws NullArgumentException if type or NaNStrategy passed is null
- */
- protected Percentile(final double quantile,
- final EstimationType estimationType,
- final NaNStrategy nanStrategy,
- final KthSelector kthSelector)
- throws MathIllegalArgumentException {
- setQuantile(quantile);
- cachedPivots = null;
- MathUtils.checkNotNull(estimationType);
- MathUtils.checkNotNull(nanStrategy);
- MathUtils.checkNotNull(kthSelector);
- this.estimationType = estimationType;
- this.nanStrategy = nanStrategy;
- this.kthSelector = kthSelector;
- }
- /** {@inheritDoc} */
- @Override
- public void setData(final double[] values) {
- if (values == null) {
- cachedPivots = null;
- } else {
- cachedPivots = new int[PIVOTS_HEAP_LENGTH];
- Arrays.fill(cachedPivots, -1);
- }
- super.setData(values);
- }
- /** {@inheritDoc} */
- @Override
- public void setData(final double[] values, final int begin, final int length)
- throws MathIllegalArgumentException {
- MathUtils.checkNotNull(values, LocalizedCoreFormats.INPUT_ARRAY);
- cachedPivots = new int[PIVOTS_HEAP_LENGTH];
- Arrays.fill(cachedPivots, -1);
- super.setData(values, begin, length);
- }
- /**
- * Returns the result of evaluating the statistic over the stored data.
- * <p>
- * The stored array is the one which was set by previous calls to
- * {@link #setData(double[])}
- *
- * @param p the percentile value to compute
- * @return the value of the statistic applied to the stored data
- * @throws MathIllegalArgumentException if p is not a valid quantile value
- * (p must be greater than 0 and less than or equal to 100)
- */
- public double evaluate(final double p) throws MathIllegalArgumentException {
- return evaluate(getDataRef(), p);
- }
- /**
- * Returns an estimate of the <code>quantile</code>th percentile of the
- * designated values in the <code>values</code> array.
- * <p>The quantile
- * estimated is determined by the <code>quantile</code> property.
- * </p>
- * <ul>
- * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li>
- * <li>Returns (for any value of <code>quantile</code>)
- * <code>values[begin]</code> if <code>length = 1 </code></li>
- * <li>Throws <code>MathIllegalArgumentException</code> if <code>values</code>
- * is null, or <code>start</code> or <code>length</code> is invalid</li>
- * </ul>
- * <p>
- * See {@link Percentile} for a description of the percentile estimation
- * algorithm used.
- *
- * @param values the input array
- * @param start index of the first array element to include
- * @param length the number of elements to include
- * @return the percentile value
- * @throws MathIllegalArgumentException if the parameters are not valid
- *
- */
- @Override
- public double evaluate(final double[] values, final int start, final int length)
- throws MathIllegalArgumentException {
- return evaluate(values, start, length, quantile);
- }
- /**
- * Returns an estimate of the <code>p</code>th percentile of the values
- * in the <code>values</code> array.
- * <ul>
- * <li>Returns <code>Double.NaN</code> if <code>values</code> has length
- * <code>0</code></li>
- * <li>Returns (for any value of <code>p</code>) <code>values[0]</code>
- * if <code>values</code> has length <code>1</code></li>
- * <li>Throws <code>MathIllegalArgumentException</code> if <code>values</code>
- * is null or p is not a valid quantile value (p must be greater than 0
- * and less than or equal to 100) </li>
- * </ul>
- * <p>
- * The default implementation delegates to
- * <code>evaluate(double[], int, int, double)</code> in the natural way.
- *
- * @param values input array of values
- * @param p the percentile value to compute
- * @return the percentile value or Double.NaN if the array is empty
- * @throws MathIllegalArgumentException if <code>values</code> is null or p is invalid
- */
- public double evaluate(final double[] values, final double p)
- throws MathIllegalArgumentException {
- MathUtils.checkNotNull(values, LocalizedCoreFormats.INPUT_ARRAY);
- return evaluate(values, 0, values.length, p);
- }
- /**
- * Returns an estimate of the <code>p</code>th percentile of the values
- * in the <code>values</code> array, starting with the element in (0-based)
- * position <code>begin</code> in the array and including <code>length</code>
- * values.
- * <p>
- * Calls to this method do not modify the internal <code>quantile</code>
- * state of this statistic.
- * </p>
- * <ul>
- * <li>Returns <code>Double.NaN</code> if <code>length = 0</code></li>
- * <li>Returns (for any value of <code>p</code>) <code>values[begin]</code>
- * if <code>length = 1 </code></li>
- * <li>Throws <code>MathIllegalArgumentException</code> if <code>values</code>
- * is null , <code>begin</code> or <code>length</code> is invalid, or
- * <code>p</code> is not a valid quantile value (p must be greater than 0
- * and less than or equal to 100)</li>
- * </ul>
- * <p>
- * See {@link Percentile} for a description of the percentile estimation
- * algorithm used.
- *
- * @param values array of input values
- * @param p the percentile to compute
- * @param begin the first (0-based) element to include in the computation
- * @param length the number of array elements to include
- * @return the percentile value
- * @throws MathIllegalArgumentException if the parameters are not valid or the
- * input array is null
- */
- public double evaluate(final double[] values, final int begin,
- final int length, final double p)
- throws MathIllegalArgumentException {
- MathArrays.verifyValues(values, begin, length);
- if (p > 100 || p <= 0) {
- throw new MathIllegalArgumentException(LocalizedStatFormats.OUT_OF_BOUNDS_QUANTILE_VALUE,
- p, 0, 100);
- }
- if (length == 0) {
- return Double.NaN;
- }
- if (length == 1) {
- return values[begin]; // always return single value for n = 1
- }
- final double[] work = getWorkArray(values, begin, length);
- final int[] pivotsHeap = getPivots(values);
- return work.length == 0 ? Double.NaN :
- estimationType.evaluate(work, pivotsHeap, p, kthSelector);
- }
- /**
- * Returns the value of the quantile field (determines what percentile is
- * computed when evaluate() is called with no quantile argument).
- *
- * @return quantile set while construction or {@link #setQuantile(double)}
- */
- public double getQuantile() {
- return quantile;
- }
- /**
- * Sets the value of the quantile field (determines what percentile is
- * computed when evaluate() is called with no quantile argument).
- *
- * @param p a value between 0 < p <= 100
- * @throws MathIllegalArgumentException if p is not greater than 0 and less
- * than or equal to 100
- */
- public void setQuantile(final double p) throws MathIllegalArgumentException {
- if (p <= 0 || p > 100) {
- throw new MathIllegalArgumentException(
- LocalizedStatFormats.OUT_OF_BOUNDS_QUANTILE_VALUE, p, 0, 100);
- }
- quantile = p;
- }
- /** {@inheritDoc} */
- @Override
- public Percentile copy() {
- return new Percentile(this);
- }
- /**
- * Get the work array to operate. Makes use of prior {@code storedData} if
- * it exists or else do a check on NaNs and copy a subset of the array
- * defined by begin and length parameters. The set {@link #nanStrategy} will
- * be used to either retain/remove/replace any NaNs present before returning
- * the resultant array.
- *
- * @param values the array of numbers
- * @param begin index to start reading the array
- * @param length the length of array to be read from the begin index
- * @return work array sliced from values in the range [begin,begin+length)
- * @throws MathIllegalArgumentException if values or indices are invalid
- */
- protected double[] getWorkArray(final double[] values, final int begin, final int length) {
- final double[] work;
- if (values == getDataRef()) {
- work = getDataRef();
- } else {
- switch (nanStrategy) {
- case MAXIMAL:// Replace NaNs with +INFs
- work = replaceAndSlice(values, begin, length, Double.NaN, Double.POSITIVE_INFINITY);
- break;
- case MINIMAL:// Replace NaNs with -INFs
- work = replaceAndSlice(values, begin, length, Double.NaN, Double.NEGATIVE_INFINITY);
- break;
- case REMOVED:// Drop NaNs from data
- work = removeAndSlice(values, begin, length, Double.NaN);
- break;
- case FAILED:// just throw exception as NaN is un-acceptable
- work = copyOf(values, begin, length);
- MathArrays.checkNotNaN(work);
- break;
- default: //FIXED
- work = copyOf(values, begin, length);
- break;
- }
- }
- return work;
- }
- /**
- * Make a copy of the array for the slice defined by array part from
- * [begin, begin+length)
- * @param values the input array
- * @param begin start index of the array to include
- * @param length number of elements to include from begin
- * @return copy of a slice of the original array
- */
- private static double[] copyOf(final double[] values, final int begin, final int length) {
- MathArrays.verifyValues(values, begin, length);
- return Arrays.copyOfRange(values, begin, begin + length);
- }
- /**
- * Replace every occurrence of a given value with a replacement value in a
- * copied slice of array defined by array part from [begin, begin+length).
- * @param values the input array
- * @param begin start index of the array to include
- * @param length number of elements to include from begin
- * @param original the value to be replaced with
- * @param replacement the value to be used for replacement
- * @return the copy of sliced array with replaced values
- */
- private static double[] replaceAndSlice(final double[] values,
- final int begin, final int length,
- final double original,
- final double replacement) {
- final double[] temp = copyOf(values, begin, length);
- for(int i = 0; i < length; i++) {
- temp[i] = Precision.equalsIncludingNaN(original, temp[i]) ?
- replacement : temp[i];
- }
- return temp;
- }
- /**
- * Remove the occurrence of a given value in a copied slice of array
- * defined by the array part from [begin, begin+length).
- * @param values the input array
- * @param begin start index of the array to include
- * @param length number of elements to include from begin
- * @param removedValue the value to be removed from the sliced array
- * @return the copy of the sliced array after removing the removedValue
- */
- private static double[] removeAndSlice(final double[] values,
- final int begin, final int length,
- final double removedValue) {
- MathArrays.verifyValues(values, begin, length);
- final double[] temp;
- //BitSet(length) to indicate where the removedValue is located
- final BitSet bits = new BitSet(length);
- for (int i = begin; i < begin+length; i++) {
- if (Precision.equalsIncludingNaN(removedValue, values[i])) {
- bits.set(i - begin);
- }
- }
- //Check if empty then create a new copy
- if (bits.isEmpty()) {
- temp = copyOf(values, begin, length); // Nothing removed, just copy
- } else if (bits.cardinality() == length) {
- temp = new double[0]; // All removed, just empty
- } else { // Some removable, so new
- temp = new double[length - bits.cardinality()];
- int start = begin; //start index from source array (i.e values)
- int dest = 0; //dest index in destination array(i.e temp)
- int bitSetPtr = 0; //bitSetPtr is start index pointer of bitset
- for (int nextOne = bits.nextSetBit(bitSetPtr); nextOne != -1; nextOne = bits.nextSetBit(bitSetPtr)) {
- final int lengthToCopy = nextOne - bitSetPtr;
- System.arraycopy(values, start, temp, dest, lengthToCopy);
- dest += lengthToCopy;
- start = begin + (bitSetPtr = bits.nextClearBit(nextOne));
- }
- //Copy any residue past start index till begin+length
- if (start < begin + length) {
- System.arraycopy(values,start,temp,dest,begin + length - start);
- }
- }
- return temp;
- }
- /**
- * Get pivots which is either cached or a newly created one
- *
- * @param values array containing the input numbers
- * @return cached pivots or a newly created one
- */
- private int[] getPivots(final double[] values) {
- final int[] pivotsHeap;
- if (values == getDataRef()) {
- pivotsHeap = cachedPivots;
- } else {
- pivotsHeap = new int[PIVOTS_HEAP_LENGTH];
- Arrays.fill(pivotsHeap, -1);
- }
- return pivotsHeap;
- }
- /**
- * Get the estimation {@link EstimationType type} used for computation.
- *
- * @return the {@code estimationType} set
- */
- public EstimationType getEstimationType() {
- return estimationType;
- }
- /**
- * Build a new instance similar to the current one except for the
- * {@link EstimationType estimation type}.
- * <p>
- * This method is intended to be used as part of a fluent-type builder
- * pattern. Building finely tune instances should be done as follows:
- * <pre>
- * Percentile customized = new Percentile(quantile).
- * withEstimationType(estimationType).
- * withNaNStrategy(nanStrategy).
- * withKthSelector(kthSelector);
- * </pre>
- * <p>
- * If any of the {@code withXxx} method is omitted, the default value for
- * the corresponding customization parameter will be used.
- *
- * @param newEstimationType estimation type for the new instance
- * @return a new instance, with changed estimation type
- * @throws NullArgumentException when newEstimationType is null
- */
- public Percentile withEstimationType(final EstimationType newEstimationType) {
- return new Percentile(quantile, newEstimationType, nanStrategy, kthSelector);
- }
- /**
- * Get the {@link NaNStrategy NaN Handling} strategy used for computation.
- * @return {@code NaN Handling} strategy set during construction
- */
- public NaNStrategy getNaNStrategy() {
- return nanStrategy;
- }
- /**
- * Build a new instance similar to the current one except for the
- * {@link NaNStrategy NaN handling} strategy.
- * <p>
- * This method is intended to be used as part of a fluent-type builder
- * pattern. Building finely tune instances should be done as follows:
- * <pre>
- * Percentile customized = new Percentile(quantile).
- * withEstimationType(estimationType).
- * withNaNStrategy(nanStrategy).
- * withKthSelector(kthSelector);
- * </pre>
- * <p>
- * If any of the {@code withXxx} method is omitted, the default value for
- * the corresponding customization parameter will be used.
- *
- * @param newNaNStrategy NaN strategy for the new instance
- * @return a new instance, with changed NaN handling strategy
- * @throws NullArgumentException when newNaNStrategy is null
- */
- public Percentile withNaNStrategy(final NaNStrategy newNaNStrategy) {
- return new Percentile(quantile, estimationType, newNaNStrategy, kthSelector);
- }
- /**
- * Get the {@link KthSelector kthSelector} used for computation.
- * @return the {@code kthSelector} set
- */
- public KthSelector getKthSelector() {
- return kthSelector;
- }
- /**
- * Get the {@link PivotingStrategy} used in KthSelector for computation.
- * @return the pivoting strategy set
- */
- public PivotingStrategy getPivotingStrategy() {
- return kthSelector.getPivotingStrategy();
- }
- /**
- * Build a new instance similar to the current one except for the
- * {@link KthSelector kthSelector} instance specifically set.
- * <p>
- * This method is intended to be used as part of a fluent-type builder
- * pattern. Building finely tune instances should be done as follows:
- * <pre>
- * Percentile customized = new Percentile(quantile).
- * withEstimationType(estimationType).
- * withNaNStrategy(nanStrategy).
- * withKthSelector(newKthSelector);
- * </pre>
- * <p>
- * If any of the {@code withXxx} method is omitted, the default value for
- * the corresponding customization parameter will be used.
- *
- * @param newKthSelector KthSelector for the new instance
- * @return a new instance, with changed KthSelector
- * @throws NullArgumentException when newKthSelector is null
- */
- public Percentile withKthSelector(final KthSelector newKthSelector) {
- return new Percentile(quantile, estimationType, nanStrategy, newKthSelector);
- }
- /**
- * An enum for various estimation strategies of a percentile referred in
- * <a href="http://en.wikipedia.org/wiki/Quantile">wikipedia on quantile</a>
- * with the names of enum matching those of types mentioned in
- * wikipedia.
- * <p>
- * Each enum corresponding to the specific type of estimation in wikipedia
- * implements the respective formulae that specializes in the below aspects
- * <ul>
- * <li>An <b>index method</b> to calculate approximate index of the
- * estimate</li>
- * <li>An <b>estimate method</b> to estimate a value found at the earlier
- * computed index</li>
- * <li>A <b> minLimit</b> on the quantile for which first element of sorted
- * input is returned as an estimate </li>
- * <li>A <b> maxLimit</b> on the quantile for which last element of sorted
- * input is returned as an estimate </li>
- * </ul>
- * <p>
- * Users can now create {@link Percentile} by explicitly passing this enum;
- * such as by invoking {@link Percentile#withEstimationType(EstimationType)}
- * <p>
- * References:
- * <ol>
- * <li>
- * <a href="http://en.wikipedia.org/wiki/Quantile">Wikipedia on quantile</a>
- * </li>
- * <li>
- * <a href="https://www.amherst.edu/media/view/129116/.../Sample+Quantiles.pdf">
- * Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical
- * packages, American Statistician 50, 361–365</a> </li>
- * <li>
- * <a href="http://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html">
- * R-Manual </a></li>
- * </ol>
- */
- public enum EstimationType {
- /**
- * This is the default type used in the {@link Percentile}.This method
- * has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index = (N+1)p\ \\
- * &estimate = x_{\lceil h\,-\,1/2 \rceil} \\
- * &minLimit = 0 \\
- * &maxLimit = 1 \\
- * \end{align}\)
- */
- LEGACY("Legacy Hipparchus") {
- /**
- * {@inheritDoc}.This method in particular makes use of existing
- * Hipparchus style of picking up the index.
- */
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 0d;
- final double maxLimit = 1d;
- return Double.compare(p, minLimit) == 0 ? 0 :
- Double.compare(p, maxLimit) == 0 ?
- length : p * (length + 1);
- }
- },
- /**
- * The method R_1 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= Np + 1/2\, \\
- * &estimate= x_{\lceil h\,-\,1/2 \rceil} \\
- * &minLimit = 0 \\
- * \end{align}\)
- */
- R_1("R-1") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 0d;
- return Double.compare(p, minLimit) == 0 ? 0 : length * p + 0.5;
- }
- /**
- * {@inheritDoc}This method in particular for R_1 uses ceil(pos-0.5)
- */
- @Override
- protected double estimate(final double[] values,
- final int[] pivotsHeap, final double pos,
- final int length, final KthSelector selector) {
- return super.estimate(values, pivotsHeap, FastMath.ceil(pos - 0.5), length, selector);
- }
- },
- /**
- * The method R_2 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= Np + 1/2\, \\
- * &estimate=\frac{x_{\lceil h\,-\,1/2 \rceil} +
- * x_{\lfloor h\,+\,1/2 \rfloor}}{2} \\
- * &minLimit = 0 \\
- * &maxLimit = 1 \\
- * \end{align}\)
- */
- R_2("R-2") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 0d;
- final double maxLimit = 1d;
- return Double.compare(p, maxLimit) == 0 ? length :
- Double.compare(p, minLimit) == 0 ? 0 : length * p + 0.5;
- }
- /**
- * {@inheritDoc}This method in particular for R_2 averages the
- * values at ceil(p+0.5) and floor(p-0.5).
- */
- @Override
- protected double estimate(final double[] values,
- final int[] pivotsHeap, final double pos,
- final int length, final KthSelector selector) {
- final double low =
- super.estimate(values, pivotsHeap, FastMath.ceil(pos - 0.5), length, selector);
- final double high =
- super.estimate(values, pivotsHeap,FastMath.floor(pos + 0.5), length, selector);
- return (low + high) / 2;
- }
- },
- /**
- * The method R_3 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= Np \\
- * &estimate= x_{\lfloor h \rceil}\, \\
- * &minLimit = 0.5/N \\
- * \end{align}\)
- */
- R_3("R-3") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 1d/2 / length;
- return Double.compare(p, minLimit) <= 0 ?
- 0 : FastMath.rint(length * p);
- }
- },
- /**
- * The method R_4 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= Np\, \\
- * &estimate= x_{\lfloor h \rfloor} + (h -
- * \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = 1/N \\
- * &maxLimit = 1 \\
- * \end{align}\)
- */
- R_4("R-4") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 1d / length;
- final double maxLimit = 1d;
- return Double.compare(p, minLimit) < 0 ? 0 :
- Double.compare(p, maxLimit) == 0 ? length : length * p;
- }
- },
- /**
- * The method R_5 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= Np + 1/2\\
- * &estimate= x_{\lfloor h \rfloor} + (h -
- * \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = 0.5/N \\
- * &maxLimit = (N-0.5)/N
- * \end{align}\)
- */
- R_5("R-5") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 1d/2 / length;
- final double maxLimit = (length - 0.5) / length;
- return Double.compare(p, minLimit) < 0 ? 0 :
- Double.compare(p, maxLimit) >= 0 ?
- length : length * p + 0.5;
- }
- },
- /**
- * The method R_6 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index= (N + 1)p \\
- * &estimate= x_{\lfloor h \rfloor} + (h -
- * \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = 1/(N+1) \\
- * &maxLimit = N/(N+1) \\
- * \end{align}\)
- * <p>
- * <b>Note:</b> This method computes the index in a manner very close to
- * the default Hipparchus Percentile existing implementation. However
- * the difference to be noted is in picking up the limits with which
- * first element (p<1(N+1)) and last elements (p>N/(N+1))are done.
- * While in default case; these are done with p=0 and p=1 respectively.
- */
- R_6("R-6") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 1d / (length + 1);
- final double maxLimit = 1d * length / (length + 1);
- return Double.compare(p, minLimit) < 0 ? 0 :
- Double.compare(p, maxLimit) >= 0 ?
- length : (length + 1) * p;
- }
- },
- /**
- * The method R_7 implements Microsoft Excel style computation has the
- * following formulae for index and estimates.<br>
- * \( \begin{align}
- * &index = (N-1)p + 1 \\
- * &estimate = x_{\lfloor h \rfloor} + (h -
- * \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = 0 \\
- * &maxLimit = 1 \\
- * \end{align}\)
- */
- R_7("R-7") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 0d;
- final double maxLimit = 1d;
- return Double.compare(p, minLimit) == 0 ? 0 :
- Double.compare(p, maxLimit) == 0 ?
- length : 1 + (length - 1) * p;
- }
- },
- /**
- * The method R_8 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index = (N + 1/3)p + 1/3 \\
- * &estimate = x_{\lfloor h \rfloor} + (h -
- \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = (2/3)/(N+1/3) \\
- * &maxLimit = (N-1/3)/(N+1/3) \\
- * \end{align}\)
- * <p>
- * As per Ref [2,3] this approach is most recommended as it provides
- * an approximate median-unbiased estimate regardless of distribution.
- */
- R_8("R-8") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 2 * (1d / 3) / (length + 1d / 3);
- final double maxLimit =
- (length - 1d / 3) / (length + 1d / 3);
- return Double.compare(p, minLimit) < 0 ? 0 :
- Double.compare(p, maxLimit) >= 0 ? length :
- (length + 1d / 3) * p + 1d / 3;
- }
- },
- /**
- * The method R_9 has the following formulae for index and estimates<br>
- * \( \begin{align}
- * &index = (N + 1/4)p + 3/8\\
- * &estimate = x_{\lfloor h \rfloor} + (h -
- \lfloor h \rfloor) (x_{\lfloor h \rfloor + 1} - x_{\lfloor h
- * \rfloor}) \\
- * &minLimit = (5/8)/(N+1/4) \\
- * &maxLimit = (N-3/8)/(N+1/4) \\
- * \end{align}\)
- */
- R_9("R-9") {
- @Override
- protected double index(final double p, final int length) {
- final double minLimit = 5d/8 / (length + 0.25);
- final double maxLimit = (length - 3d/8) / (length + 0.25);
- return Double.compare(p, minLimit) < 0 ? 0 :
- Double.compare(p, maxLimit) >= 0 ? length :
- (length + 0.25) * p + 3d/8;
- }
- },
- ;
- /** Simple name such as R-1, R-2 corresponding to those in wikipedia. */
- private final String name;
- /**
- * Constructor
- *
- * @param type name of estimation type as per wikipedia
- */
- EstimationType(final String type) {
- this.name = type;
- }
- /**
- * Finds the index of array that can be used as starting index to
- * {@link #estimate(double[], int[], double, int, KthSelector) estimate}
- * percentile. The calculation of index calculation is specific to each
- * {@link EstimationType}.
- *
- * @param p the p<sup>th</sup> quantile
- * @param length the total number of array elements in the work array
- * @return a computed real valued index as explained in the wikipedia
- */
- protected abstract double index(double p, int length);
- /**
- * Estimation based on K<sup>th</sup> selection. This may be overridden
- * in specific enums to compute slightly different estimations.
- *
- * @param work array of numbers to be used for finding the percentile
- * @param pos indicated positional index prior computed from calling
- * {@link #index(double, int)}
- * @param pivotsHeap an earlier populated cache if exists; will be used
- * @param length size of array considered
- * @param selector a {@link KthSelector} used for pivoting during search
- * @return estimated percentile
- */
- protected double estimate(final double[] work, final int[] pivotsHeap,
- final double pos, final int length,
- final KthSelector selector) {
- final double fpos = FastMath.floor(pos);
- final int intPos = (int) fpos;
- final double dif = pos - fpos;
- if (pos < 1) {
- return selector.select(work, pivotsHeap, 0);
- }
- if (pos >= length) {
- return selector.select(work, pivotsHeap, length - 1);
- }
- final double lower = selector.select(work, pivotsHeap, intPos - 1);
- final double upper = selector.select(work, pivotsHeap, intPos);
- return lower + dif * (upper - lower);
- }
- /**
- * Evaluate method to compute the percentile for a given bounded array
- * using earlier computed pivots heap.<br>
- * This basically calls the {@link #index(double, int) index} and then
- * {@link #estimate(double[], int[], double, int, KthSelector) estimate}
- * functions to return the estimated percentile value.
- *
- * @param work array of numbers to be used for finding the percentile
- * @param pivotsHeap a prior cached heap which can speed up estimation
- * @param p the p<sup>th</sup> quantile to be computed
- * @param selector a {@link KthSelector} used for pivoting during search
- * @return estimated percentile
- * @throws MathIllegalArgumentException if p is out of range
- * @throws NullArgumentException if work array is null
- */
- protected double evaluate(final double[] work, final int[] pivotsHeap, final double p,
- final KthSelector selector) {
- MathUtils.checkNotNull(work);
- if (p > 100 || p <= 0) {
- throw new MathIllegalArgumentException(LocalizedStatFormats.OUT_OF_BOUNDS_QUANTILE_VALUE,
- p, 0, 100);
- }
- return estimate(work, pivotsHeap, index(p/100d, work.length), work.length, selector);
- }
- /**
- * Evaluate method to compute the percentile for a given bounded array.
- * This basically calls the {@link #index(double, int) index} and then
- * {@link #estimate(double[], int[], double, int, KthSelector) estimate}
- * functions to return the estimated percentile value. Please
- * note that this method does not make use of cached pivots.
- *
- * @param work array of numbers to be used for finding the percentile
- * @param p the p<sup>th</sup> quantile to be computed
- * @return estimated percentile
- * @param selector a {@link KthSelector} used for pivoting during search
- * @throws MathIllegalArgumentException if length or p is out of range
- * @throws NullArgumentException if work array is null
- */
- public double evaluate(final double[] work, final double p, final KthSelector selector) {
- return this.evaluate(work, null, p, selector);
- }
- /**
- * Gets the name of the enum
- *
- * @return the name
- */
- String getName() {
- return name;
- }
- }
- }