BaseMultiStartMultivariateOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.random.RandomVectorGenerator;
- /**
- * Base class multi-start optimizer for a multivariate function.
- * <br>
- * This class wraps an optimizer in order to use it several times in
- * turn with different starting points (trying to avoid being trapped
- * in a local extremum when looking for a global one).
- * <em>It is not a "user" class.</em>
- *
- * @param <P> Type of the point/value pair returned by the optimization
- * algorithm.
- *
- */
- public abstract class BaseMultiStartMultivariateOptimizer<P>
- extends BaseMultivariateOptimizer<P> {
- /** Underlying classical optimizer. */
- private final BaseMultivariateOptimizer<P> optimizer;
- /** Number of evaluations already performed for all starts. */
- private int totalEvaluations;
- /** Number of starts to go. */
- private int starts;
- /** Random generator for multi-start. */
- private RandomVectorGenerator generator;
- /** Optimization data. */
- private OptimizationData[] optimData;
- /**
- * Location in {@link #optimData} where the updated maximum
- * number of evaluations will be stored.
- */
- private int maxEvalIndex = -1;
- /**
- * Location in {@link #optimData} where the updated start value
- * will be stored.
- */
- private int initialGuessIndex = -1;
- /**
- * Create a multi-start optimizer from a single-start optimizer.
- * <p>
- * Note that if there are bounds constraints (see {@link #getLowerBound()}
- * and {@link #getUpperBound()}), then a simple rejection algorithm is used
- * at each restart. This implies that the random vector generator should have
- * a good probability to generate vectors in the bounded domain, otherwise the
- * rejection algorithm will hit the {@link #getMaxEvaluations()} count without
- * generating a proper restart point. Users must be take great care of the <a
- * href="http://en.wikipedia.org/wiki/Curse_of_dimensionality">curse of dimensionality</a>.
- * </p>
- * @param optimizer Single-start optimizer to wrap.
- * @param starts Number of starts to perform. If {@code starts == 1},
- * the {@link #optimize(OptimizationData[]) optimize} will return the
- * same solution as the given {@code optimizer} would return.
- * @param generator Random vector generator to use for restarts.
- * @throws MathIllegalArgumentException if {@code starts < 1}.
- */
- protected BaseMultiStartMultivariateOptimizer(final BaseMultivariateOptimizer<P> optimizer, final int starts,
- final RandomVectorGenerator generator) {
- super(optimizer.getConvergenceChecker());
- if (starts < 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- starts, 1);
- }
- this.optimizer = optimizer;
- this.starts = starts;
- this.generator = generator;
- }
- /** {@inheritDoc} */
- @Override
- public int getEvaluations() {
- return totalEvaluations;
- }
- /**
- * Gets all the optima found during the last call to {@code optimize}.
- * The optimizer stores all the optima found during a set of
- * restarts. The {@code optimize} method returns the best point only.
- * This method returns all the points found at the end of each starts,
- * including the best one already returned by the {@code optimize} method.
- * <br>
- * The returned array as one element for each start as specified
- * in the constructor. It is ordered with the results from the
- * runs that did converge first, sorted from best to worst
- * objective value (i.e in ascending order if minimizing and in
- * descending order if maximizing), followed by {@code null} elements
- * corresponding to the runs that did not converge. This means all
- * elements will be {@code null} if the {@code optimize} method did throw
- * an exception.
- * This also means that if the first element is not {@code null}, it is
- * the best point found across all starts.
- * <br>
- * The behaviour is undefined if this method is called before
- * {@code optimize}; it will likely throw {@code NullPointerException}.
- *
- * @return an array containing the optima sorted from best to worst.
- */
- public abstract P[] getOptima();
- /**
- * {@inheritDoc}
- *
- * @throws MathIllegalStateException if {@code optData} does not contain an
- * instance of {@link MaxEval} or {@link InitialGuess}.
- */
- @Override
- public P optimize(OptimizationData... optData) {
- // Store arguments in order to pass them to the internal optimizer.
- optimData = optData.clone();
- // Set up base class and perform computations.
- return super.optimize(optData);
- }
- /** {@inheritDoc} */
- @Override
- protected P doOptimize() {
- // Remove all instances of "MaxEval" and "InitialGuess" from the
- // array that will be passed to the internal optimizer.
- // The former is to enforce smaller numbers of allowed evaluations
- // (according to how many have been used up already), and the latter
- // to impose a different start value for each start.
- for (int i = 0; i < optimData.length; i++) {
- if (optimData[i] instanceof MaxEval) {
- optimData[i] = null;
- maxEvalIndex = i;
- }
- if (optimData[i] instanceof InitialGuess) {
- optimData[i] = null;
- initialGuessIndex = i;
- continue;
- }
- }
- if (maxEvalIndex == -1) {
- throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
- }
- if (initialGuessIndex == -1) {
- throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
- }
- RuntimeException lastException = null;
- totalEvaluations = 0;
- clear();
- final int maxEval = getMaxEvaluations();
- final double[] min = getLowerBound();
- final double[] max = getUpperBound();
- final double[] startPoint = getStartPoint();
- // Multi-start loop.
- for (int i = 0; i < starts; i++) {
- // CHECKSTYLE: stop IllegalCatch
- try {
- // Decrease number of allowed evaluations.
- optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
- // New start value.
- double[] s = null;
- if (i == 0) {
- s = startPoint;
- } else {
- int attempts = 0;
- while (s == null) {
- if (attempts >= getMaxEvaluations()) {
- throw new MathIllegalStateException(LocalizedCoreFormats.MAX_COUNT_EXCEEDED,
- getMaxEvaluations());
- }
- s = generator.nextVector();
- for (int k = 0; s != null && k < s.length; ++k) {
- if ((min != null && s[k] < min[k]) || (max != null && s[k] > max[k])) {
- // reject the vector
- s = null;
- }
- }
- ++attempts;
- }
- }
- optimData[initialGuessIndex] = new InitialGuess(s);
- // Optimize.
- final P result = optimizer.optimize(optimData);
- store(result);
- } catch (RuntimeException mue) { // NOPMD - caching a RuntimeException is intentional here, it will be rethrown later
- lastException = mue;
- }
- // CHECKSTYLE: resume IllegalCatch
- totalEvaluations += optimizer.getEvaluations();
- }
- final P[] optima = getOptima();
- if (optima.length == 0) {
- // All runs failed.
- throw lastException; // Cannot be null if starts >= 1.
- }
- // Return the best optimum.
- return optima[0];
- }
- /**
- * Method that will be called in order to store each found optimum.
- *
- * @param optimum Result of an optimization run.
- */
- protected abstract void store(P optimum);
- /**
- * Method that will called in order to clear all stored optima.
- */
- protected abstract void clear();
- }