MultiStartUnivariateOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.univariate;
- import java.util.Arrays;
- import java.util.Comparator;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.optim.MaxEval;
- import org.hipparchus.optim.OptimizationData;
- import org.hipparchus.optim.nonlinear.scalar.GoalType;
- import org.hipparchus.random.RandomGenerator;
- /**
- * Special implementation of the {@link UnivariateOptimizer} interface
- * adding multi-start features to an existing optimizer.
- * <br>
- * This class wraps an optimizer in order to use it several times in
- * turn with different starting points (trying to avoid being trapped
- * in a local extremum when looking for a global one).
- *
- */
- public class MultiStartUnivariateOptimizer
- extends UnivariateOptimizer {
- /** Underlying classical optimizer. */
- private final UnivariateOptimizer optimizer;
- /** Number of evaluations already performed for all starts. */
- private int totalEvaluations;
- /** Number of starts to go. */
- private final int starts;
- /** Random generator for multi-start. */
- private final RandomGenerator generator;
- /** Found optima. */
- private UnivariatePointValuePair[] optima;
- /** Optimization data. */
- private OptimizationData[] optimData;
- /**
- * Location in {@link #optimData} where the updated maximum
- * number of evaluations will be stored.
- */
- private int maxEvalIndex = -1;
- /**
- * Location in {@link #optimData} where the updated start value
- * will be stored.
- */
- private int searchIntervalIndex = -1;
- /**
- * Create a multi-start optimizer from a single-start optimizer.
- *
- * @param optimizer Single-start optimizer to wrap.
- * @param starts Number of starts to perform. If {@code starts == 1},
- * the {@code optimize} methods will return the same solution as
- * {@code optimizer} would.
- * @param generator Random generator to use for restarts.
- * @throws MathIllegalArgumentException if {@code starts < 1}.
- */
- public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer,
- final int starts,
- final RandomGenerator generator) {
- super(optimizer.getConvergenceChecker());
- if (starts < 1) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- starts, 1);
- }
- this.optimizer = optimizer;
- this.starts = starts;
- this.generator = generator;
- }
- /** {@inheritDoc} */
- @Override
- public int getEvaluations() {
- return totalEvaluations;
- }
- /**
- * Gets all the optima found during the last call to {@code optimize}.
- * The optimizer stores all the optima found during a set of
- * restarts. The {@code optimize} method returns the best point only.
- * This method returns all the points found at the end of each starts,
- * including the best one already returned by the {@code optimize} method.
- * <br>
- * The returned array as one element for each start as specified
- * in the constructor. It is ordered with the results from the
- * runs that did converge first, sorted from best to worst
- * objective value (i.e in ascending order if minimizing and in
- * descending order if maximizing), followed by {@code null} elements
- * corresponding to the runs that did not converge. This means all
- * elements will be {@code null} if the {@code optimize} method did throw
- * an exception.
- * This also means that if the first element is not {@code null}, it is
- * the best point found across all starts.
- *
- * @return an array containing the optima.
- * @throws MathIllegalStateException if {@link #optimize(OptimizationData[])
- * optimize} has not been called.
- */
- public UnivariatePointValuePair[] getOptima() {
- if (optima == null) {
- throw new MathIllegalStateException(LocalizedCoreFormats.NO_OPTIMUM_COMPUTED_YET);
- }
- return optima.clone();
- }
- /**
- * {@inheritDoc}
- *
- * @throws MathIllegalStateException if {@code optData} does not contain an
- * instance of {@link MaxEval} or {@link SearchInterval}.
- */
- @Override
- public UnivariatePointValuePair optimize(OptimizationData... optData) {
- // Store arguments in order to pass them to the internal optimizer.
- optimData = optData.clone();
- // Set up base class and perform computations.
- return super.optimize(optData);
- }
- /** {@inheritDoc} */
- @Override
- protected UnivariatePointValuePair doOptimize() {
- // Remove all instances of "MaxEval" and "SearchInterval" from the
- // array that will be passed to the internal optimizer.
- // The former is to enforce smaller numbers of allowed evaluations
- // (according to how many have been used up already), and the latter
- // to impose a different start value for each start.
- for (int i = 0; i < optimData.length; i++) {
- if (optimData[i] instanceof MaxEval) {
- optimData[i] = null;
- maxEvalIndex = i;
- continue;
- }
- if (optimData[i] instanceof SearchInterval) {
- optimData[i] = null;
- searchIntervalIndex = i;
- continue;
- }
- }
- if (maxEvalIndex == -1) {
- throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
- }
- if (searchIntervalIndex == -1) {
- throw new MathIllegalStateException(LocalizedCoreFormats.ILLEGAL_STATE);
- }
- RuntimeException lastException = null;
- optima = new UnivariatePointValuePair[starts];
- totalEvaluations = 0;
- final int maxEval = getMaxEvaluations();
- final double min = getMin();
- final double max = getMax();
- final double startValue = getStartValue();
- // Multi-start loop.
- for (int i = 0; i < starts; i++) {
- // CHECKSTYLE: stop IllegalCatch
- try {
- // Decrease number of allowed evaluations.
- optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
- // New start value.
- final double s = (i == 0) ?
- startValue :
- min + generator.nextDouble() * (max - min);
- optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
- // Optimize.
- optima[i] = optimizer.optimize(optimData);
- } catch (RuntimeException mue) { // NOPMD - caching a RuntimeException is intentional here, it will be rethrown later
- lastException = mue;
- optima[i] = null;
- }
- // CHECKSTYLE: resume IllegalCatch
- totalEvaluations += optimizer.getEvaluations();
- }
- sortPairs(getGoalType());
- if (optima[0] == null) {
- throw lastException; // Cannot be null if starts >= 1.
- }
- // Return the point with the best objective function value.
- return optima[0];
- }
- /**
- * Sort the optima from best to worst, followed by {@code null} elements.
- *
- * @param goal Goal type.
- */
- private void sortPairs(final GoalType goal) {
- Arrays.sort(optima, new Comparator<UnivariatePointValuePair>() {
- /** {@inheritDoc} */
- @Override
- public int compare(final UnivariatePointValuePair o1,
- final UnivariatePointValuePair o2) {
- if (o1 == null) {
- return (o2 == null) ? 0 : 1;
- } else if (o2 == null) {
- return -1;
- }
- final double v1 = o1.getValue();
- final double v2 = o2.getValue();
- return (goal == GoalType.MINIMIZE) ?
- Double.compare(v1, v2) : Double.compare(v2, v1);
- }
- });
- }
- }