MultivariateFunctionMappingAdapter.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.scalar;
- import org.hipparchus.analysis.MultivariateFunction;
- import org.hipparchus.analysis.UnivariateFunction;
- import org.hipparchus.analysis.function.Logit;
- import org.hipparchus.analysis.function.Sigmoid;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- /**
- * <p>Adapter for mapping bounded {@link MultivariateFunction} to unbounded ones.</p>
- *
- * <p>
- * This adapter can be used to wrap functions subject to simple bounds on
- * parameters so they can be used by optimizers that do <em>not</em> directly
- * support simple bounds.
- * </p>
- * <p>
- * The principle is that the user function that will be wrapped will see its
- * parameters bounded as required, i.e when its {@code value} method is called
- * with argument array {@code point}, the elements array will fulfill requirement
- * {@code lower[i] <= point[i] <= upper[i]} for all i. Some of the components
- * may be unbounded or bounded only on one side if the corresponding bound is
- * set to an infinite value. The optimizer will not manage the user function by
- * itself, but it will handle this adapter and it is this adapter that will take
- * care the bounds are fulfilled. The adapter {@link #value(double[])} method will
- * be called by the optimizer with unbound parameters, and the adapter will map
- * the unbounded value to the bounded range using appropriate functions like
- * {@link Sigmoid} for double bounded elements for example.
- * </p>
- * <p>
- * As the optimizer sees only unbounded parameters, it should be noted that the
- * start point or simplex expected by the optimizer should be unbounded, so the
- * user is responsible for converting his bounded point to unbounded by calling
- * {@link #boundedToUnbounded(double[])} before providing them to the optimizer.
- * For the same reason, the point returned by the {@link
- * org.hipparchus.optim.BaseMultivariateOptimizer#optimize(org.hipparchus.optim.OptimizationData[])}
- * method is unbounded. So to convert this point to bounded, users must call
- * {@link #unboundedToBounded(double[])} by themselves!</p>
- * <p>
- * This adapter is only a poor man solution to simple bounds optimization constraints
- * that can be used with simple optimizers like
- * {@link org.hipparchus.optim.nonlinear.scalar.noderiv.SimplexOptimizer
- * SimplexOptimizer}.
- * A better solution is to use an optimizer that directly supports simple bounds like
- * {@link org.hipparchus.optim.nonlinear.scalar.noderiv.CMAESOptimizer
- * CMAESOptimizer} or
- * {@link org.hipparchus.optim.nonlinear.scalar.noderiv.BOBYQAOptimizer
- * BOBYQAOptimizer}.
- * One caveat of this poor-man's solution is that behavior near the bounds may be
- * numerically unstable as bounds are mapped from infinite values.
- * Another caveat is that convergence values are evaluated by the optimizer with
- * respect to unbounded variables, so there will be scales differences when
- * converted to bounded variables.
- * </p>
- *
- * @see MultivariateFunctionPenaltyAdapter
- *
- */
- public class MultivariateFunctionMappingAdapter
- implements MultivariateFunction {
- /** Underlying bounded function. */
- private final MultivariateFunction bounded;
- /** Mapping functions. */
- private final Mapper[] mappers;
- /** Simple constructor.
- * @param bounded bounded function
- * @param lower lower bounds for each element of the input parameters array
- * (some elements may be set to {@code Double.NEGATIVE_INFINITY} for
- * unbounded values)
- * @param upper upper bounds for each element of the input parameters array
- * (some elements may be set to {@code Double.POSITIVE_INFINITY} for
- * unbounded values)
- * @exception MathIllegalArgumentException if lower and upper bounds are not
- * consistent, either according to dimension or to values
- */
- public MultivariateFunctionMappingAdapter(final MultivariateFunction bounded,
- final double[] lower, final double[] upper) {
- // safety checks
- MathUtils.checkNotNull(lower);
- MathUtils.checkNotNull(upper);
- if (lower.length != upper.length) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- lower.length, upper.length);
- }
- for (int i = 0; i < lower.length; ++i) {
- if (!(upper[i] >= lower[i])) { // NOPMD - the test is written this way so it also fails for NaN
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- upper[i], lower[i]);
- }
- }
- this.bounded = bounded;
- this.mappers = new Mapper[lower.length];
- for (int i = 0; i < mappers.length; ++i) {
- if (Double.isInfinite(lower[i])) {
- if (Double.isInfinite(upper[i])) {
- // element is unbounded, no transformation is needed
- mappers[i] = new NoBoundsMapper();
- } else {
- // element is simple-bounded on the upper side
- mappers[i] = new UpperBoundMapper(upper[i]);
- }
- } else {
- if (Double.isInfinite(upper[i])) {
- // element is simple-bounded on the lower side
- mappers[i] = new LowerBoundMapper(lower[i]);
- } else {
- // element is double-bounded
- mappers[i] = new LowerUpperBoundMapper(lower[i], upper[i]);
- }
- }
- }
- }
- /**
- * Maps an array from unbounded to bounded.
- *
- * @param point Unbounded values.
- * @return the bounded values.
- */
- public double[] unboundedToBounded(double[] point) {
- // Map unbounded input point to bounded point.
- final double[] mapped = new double[mappers.length];
- for (int i = 0; i < mappers.length; ++i) {
- mapped[i] = mappers[i].unboundedToBounded(point[i]);
- }
- return mapped;
- }
- /**
- * Maps an array from bounded to unbounded.
- *
- * @param point Bounded values.
- * @return the unbounded values.
- */
- public double[] boundedToUnbounded(double[] point) {
- // Map bounded input point to unbounded point.
- final double[] mapped = new double[mappers.length];
- for (int i = 0; i < mappers.length; ++i) {
- mapped[i] = mappers[i].boundedToUnbounded(point[i]);
- }
- return mapped;
- }
- /**
- * Compute the underlying function value from an unbounded point.
- * <p>
- * This method simply bounds the unbounded point using the mappings
- * set up at construction and calls the underlying function using
- * the bounded point.
- * </p>
- * @param point unbounded value
- * @return underlying function value
- * @see #unboundedToBounded(double[])
- */
- @Override
- public double value(double[] point) {
- return bounded.value(unboundedToBounded(point));
- }
- /** Mapping interface. */
- private interface Mapper {
- /**
- * Maps a value from unbounded to bounded.
- *
- * @param y Unbounded value.
- * @return the bounded value.
- */
- double unboundedToBounded(double y);
- /**
- * Maps a value from bounded to unbounded.
- *
- * @param x Bounded value.
- * @return the unbounded value.
- */
- double boundedToUnbounded(double x);
- }
- /** Local class for no bounds mapping. */
- private static class NoBoundsMapper implements Mapper {
- /** {@inheritDoc} */
- @Override
- public double unboundedToBounded(final double y) {
- return y;
- }
- /** {@inheritDoc} */
- @Override
- public double boundedToUnbounded(final double x) {
- return x;
- }
- }
- /** Local class for lower bounds mapping. */
- private static class LowerBoundMapper implements Mapper {
- /** Low bound. */
- private final double lower;
- /**
- * Simple constructor.
- *
- * @param lower lower bound
- */
- LowerBoundMapper(final double lower) {
- this.lower = lower;
- }
- /** {@inheritDoc} */
- @Override
- public double unboundedToBounded(final double y) {
- return lower + FastMath.exp(y);
- }
- /** {@inheritDoc} */
- @Override
- public double boundedToUnbounded(final double x) {
- return FastMath.log(x - lower);
- }
- }
- /** Local class for upper bounds mapping. */
- private static class UpperBoundMapper implements Mapper {
- /** Upper bound. */
- private final double upper;
- /** Simple constructor.
- * @param upper upper bound
- */
- UpperBoundMapper(final double upper) {
- this.upper = upper;
- }
- /** {@inheritDoc} */
- @Override
- public double unboundedToBounded(final double y) {
- return upper - FastMath.exp(-y);
- }
- /** {@inheritDoc} */
- @Override
- public double boundedToUnbounded(final double x) {
- return -FastMath.log(upper - x);
- }
- }
- /** Local class for lower and bounds mapping. */
- private static class LowerUpperBoundMapper implements Mapper {
- /** Function from unbounded to bounded. */
- private final UnivariateFunction boundingFunction;
- /** Function from bounded to unbounded. */
- private final UnivariateFunction unboundingFunction;
- /**
- * Simple constructor.
- *
- * @param lower lower bound
- * @param upper upper bound
- */
- LowerUpperBoundMapper(final double lower, final double upper) {
- boundingFunction = new Sigmoid(lower, upper);
- unboundingFunction = new Logit(lower, upper);
- }
- /** {@inheritDoc} */
- @Override
- public double unboundedToBounded(final double y) {
- return boundingFunction.value(y);
- }
- /** {@inheritDoc} */
- @Override
- public double boundedToUnbounded(final double x) {
- return unboundingFunction.value(x);
- }
- }
- }