GradientMultivariateOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.scalar;
- import org.hipparchus.analysis.MultivariateVectorFunction;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.optim.ConvergenceChecker;
- import org.hipparchus.optim.OptimizationData;
- import org.hipparchus.optim.PointValuePair;
- /**
- * Base class for implementing optimizers for multivariate scalar
- * differentiable functions.
- * It contains boiler-plate code for dealing with gradient evaluation.
- *
- */
- public abstract class GradientMultivariateOptimizer
- extends MultivariateOptimizer {
- /**
- * Gradient of the objective function.
- */
- private MultivariateVectorFunction gradient;
- /** Simple constructor.
- * @param checker Convergence checker.
- */
- protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- }
- /**
- * Compute the gradient vector.
- *
- * @param params Point at which the gradient must be evaluated.
- * @return the gradient at the specified point.
- */
- protected double[] computeObjectiveGradient(final double[] params) {
- return gradient.value(params);
- }
- /**
- * {@inheritDoc}
- *
- * @param optData Optimization data. In addition to those documented in
- * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
- * MultivariateOptimizer}, this method will register the following data:
- * <ul>
- * <li>{@link ObjectiveFunctionGradient}</li>
- * </ul>
- * @return {@inheritDoc}
- * @throws MathIllegalStateException if the maximal number of
- * evaluations (of the objective function) is exceeded.
- */
- @Override
- public PointValuePair optimize(OptimizationData... optData)
- throws MathIllegalStateException {
- // Set up base class and perform computation.
- return super.optimize(optData);
- }
- /**
- * Scans the list of (required and optional) optimization data that
- * characterize the problem.
- *
- * @param optData Optimization data.
- * The following data will be looked for:
- * <ul>
- * <li>{@link ObjectiveFunctionGradient}</li>
- * </ul>
- */
- @Override
- protected void parseOptimizationData(OptimizationData... optData) {
- // Allow base class to register its own data.
- super.parseOptimizationData(optData);
- // The existing values (as set by the previous call) are reused if
- // not provided in the argument list.
- for (OptimizationData data : optData) {
- if (data instanceof ObjectiveFunctionGradient) {
- gradient = ((ObjectiveFunctionGradient) data).getObjectiveFunctionGradient();
- // If more data must be parsed, this statement _must_ be
- // changed to "continue".
- break;
- }
- }
- }
- }