PowellOptimizer.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.scalar.noderiv;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.optim.ConvergenceChecker;
- import org.hipparchus.optim.OptimizationData;
- import org.hipparchus.optim.PointValuePair;
- import org.hipparchus.optim.nonlinear.scalar.GoalType;
- import org.hipparchus.optim.nonlinear.scalar.LineSearch;
- import org.hipparchus.optim.nonlinear.scalar.MultivariateOptimizer;
- import org.hipparchus.optim.univariate.UnivariatePointValuePair;
- import org.hipparchus.util.FastMath;
- /**
- * Powell's algorithm.
- * This code is translated and adapted from the Python version of this
- * algorithm (as implemented in module {@code optimize.py} v0.5 of
- * <em>SciPy</em>).
- * <br>
- * The default stopping criterion is based on the differences of the
- * function value between two successive iterations. It is however possible
- * to define a custom convergence checker that might terminate the algorithm
- * earlier.
- * <br>
- * Line search is performed by the {@link LineSearch} class.
- * <br>
- * Constraints are not supported: the call to
- * {@link #optimize(OptimizationData...)} optimize} will throw
- * {@link MathRuntimeException} if bounds are passed to it.
- * In order to impose simple constraints, the objective function must be
- * wrapped in an adapter like
- * {@link org.hipparchus.optim.nonlinear.scalar.MultivariateFunctionMappingAdapter
- * MultivariateFunctionMappingAdapter} or
- * {@link org.hipparchus.optim.nonlinear.scalar.MultivariateFunctionPenaltyAdapter
- * MultivariateFunctionPenaltyAdapter}.
- *
- */
- public class PowellOptimizer
- extends MultivariateOptimizer {
- /**
- * Minimum relative tolerance.
- */
- private static final double MIN_RELATIVE_TOLERANCE = 2 * FastMath.ulp(1d);
- /**
- * Relative threshold.
- */
- private final double relativeThreshold;
- /**
- * Absolute threshold.
- */
- private final double absoluteThreshold;
- /**
- * Line search.
- */
- private final LineSearch line;
- /**
- * This constructor allows to specify a user-defined convergence checker,
- * in addition to the parameters that control the default convergence
- * checking procedure.
- * <br>
- * The internal line search tolerances are set to the square-root of their
- * corresponding value in the multivariate optimizer.
- *
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- * @param checker Convergence checker.
- * @throws MathIllegalArgumentException if {@code abs <= 0}.
- * @throws MathIllegalArgumentException if {@code rel < 2 * FastMath.ulp(1d)}.
- */
- public PowellOptimizer(double rel,
- double abs,
- ConvergenceChecker<PointValuePair> checker) {
- this(rel, abs, FastMath.sqrt(rel), FastMath.sqrt(abs), checker);
- }
- /**
- * This constructor allows to specify a user-defined convergence checker,
- * in addition to the parameters that control the default convergence
- * checking procedure and the line search tolerances.
- *
- * @param rel Relative threshold for this optimizer.
- * @param abs Absolute threshold for this optimizer.
- * @param lineRel Relative threshold for the internal line search optimizer.
- * @param lineAbs Absolute threshold for the internal line search optimizer.
- * @param checker Convergence checker.
- * @throws MathIllegalArgumentException if {@code abs <= 0}.
- * @throws MathIllegalArgumentException if {@code rel < 2 * FastMath.ulp(1d)}.
- */
- public PowellOptimizer(double rel,
- double abs,
- double lineRel,
- double lineAbs,
- ConvergenceChecker<PointValuePair> checker) {
- super(checker);
- if (rel < MIN_RELATIVE_TOLERANCE) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL,
- rel, MIN_RELATIVE_TOLERANCE);
- }
- if (abs <= 0) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.NUMBER_TOO_SMALL_BOUND_EXCLUDED,
- abs, 0);
- }
- relativeThreshold = rel;
- absoluteThreshold = abs;
- // Create the line search optimizer.
- line = new LineSearch(this,
- lineRel,
- lineAbs,
- 1d);
- }
- /**
- * The parameters control the default convergence checking procedure.
- * <br>
- * The internal line search tolerances are set to the square-root of their
- * corresponding value in the multivariate optimizer.
- *
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- * @throws MathIllegalArgumentException if {@code abs <= 0}.
- * @throws MathIllegalArgumentException if {@code rel < 2 * FastMath.ulp(1d)}.
- */
- public PowellOptimizer(double rel,
- double abs) {
- this(rel, abs, null);
- }
- /**
- * Builds an instance with the default convergence checking procedure.
- *
- * @param rel Relative threshold.
- * @param abs Absolute threshold.
- * @param lineRel Relative threshold for the internal line search optimizer.
- * @param lineAbs Absolute threshold for the internal line search optimizer.
- * @throws MathIllegalArgumentException if {@code abs <= 0}.
- * @throws MathIllegalArgumentException if {@code rel < 2 * FastMath.ulp(1d)}.
- */
- public PowellOptimizer(double rel,
- double abs,
- double lineRel,
- double lineAbs) {
- this(rel, abs, lineRel, lineAbs, null);
- }
- /** {@inheritDoc} */
- @Override
- protected PointValuePair doOptimize() {
- checkParameters();
- final GoalType goal = getGoalType();
- final double[] guess = getStartPoint();
- final int n = guess.length;
- final double[][] direc = new double[n][n];
- for (int i = 0; i < n; i++) {
- direc[i][i] = 1;
- }
- final ConvergenceChecker<PointValuePair> checker
- = getConvergenceChecker();
- double[] x = guess;
- double fVal = computeObjectiveValue(x);
- double[] x1 = x.clone();
- while (true) {
- incrementIterationCount();
- double fX = fVal;
- double delta = 0;
- int bigInd = 0;
- for (int i = 0; i < n; i++) {
- final double[] d = direc[i].clone();
- final double fX2 = fVal;
- final UnivariatePointValuePair optimum = line.search(x, d);
- fVal = optimum.getValue();
- final double alphaMin = optimum.getPoint();
- final double[][] result = newPointAndDirection(x, d, alphaMin);
- x = result[0];
- if ((fX2 - fVal) > delta) {
- delta = fX2 - fVal;
- bigInd = i;
- }
- }
- // Default convergence check.
- boolean stop = 2 * (fX - fVal) <=
- (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
- absoluteThreshold);
- final PointValuePair previous = new PointValuePair(x1, fX);
- final PointValuePair current = new PointValuePair(x, fVal);
- if (!stop && checker != null) { // User-defined stopping criteria.
- stop = checker.converged(getIterations(), previous, current);
- }
- if (stop) {
- if (goal == GoalType.MINIMIZE) {
- return (fVal < fX) ? current : previous;
- } else {
- return (fVal > fX) ? current : previous;
- }
- }
- final double[] d = new double[n];
- final double[] x2 = new double[n];
- for (int i = 0; i < n; i++) {
- d[i] = x[i] - x1[i];
- x2[i] = 2 * x[i] - x1[i];
- }
- x1 = x.clone();
- final double fX2 = computeObjectiveValue(x2);
- if (fX > fX2) {
- double t = 2 * (fX + fX2 - 2 * fVal);
- double temp = fX - fVal - delta;
- t *= temp * temp;
- temp = fX - fX2;
- t -= delta * temp * temp;
- if (t < 0.0) {
- final UnivariatePointValuePair optimum = line.search(x, d);
- fVal = optimum.getValue();
- final double alphaMin = optimum.getPoint();
- final double[][] result = newPointAndDirection(x, d, alphaMin);
- x = result[0];
- final int lastInd = n - 1;
- direc[bigInd] = direc[lastInd];
- direc[lastInd] = result[1];
- }
- }
- }
- }
- /**
- * Compute a new point (in the original space) and a new direction
- * vector, resulting from the line search.
- *
- * @param p Point used in the line search.
- * @param d Direction used in the line search.
- * @param optimum Optimum found by the line search.
- * @return a 2-element array containing the new point (at index 0) and
- * the new direction (at index 1).
- */
- private double[][] newPointAndDirection(double[] p,
- double[] d,
- double optimum) {
- final int n = p.length;
- final double[] nP = new double[n];
- final double[] nD = new double[n];
- for (int i = 0; i < n; i++) {
- nD[i] = d[i] * optimum;
- nP[i] = p[i] + nD[i];
- }
- final double[][] result = new double[2][];
- result[0] = nP;
- result[1] = nD;
- return result;
- }
- /**
- * @throws MathRuntimeException if bounds were passed to the
- * {@link #optimize(OptimizationData...)} optimize} method.
- */
- private void checkParameters() {
- if (getLowerBound() != null ||
- getUpperBound() != null) {
- throw new MathRuntimeException(LocalizedCoreFormats.CONSTRAINT);
- }
- }
- }