NelderMeadSimplex.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.optim.nonlinear.scalar.noderiv;
- import java.util.Comparator;
- import org.hipparchus.analysis.MultivariateFunction;
- import org.hipparchus.optim.PointValuePair;
- /**
- * This class implements the Nelder-Mead simplex algorithm.
- *
- */
- public class NelderMeadSimplex extends AbstractSimplex {
- /** Default value for {@link #rho}: {@value}. */
- private static final double DEFAULT_RHO = 1;
- /** Default value for {@link #khi}: {@value}. */
- private static final double DEFAULT_KHI = 2;
- /** Default value for {@link #gamma}: {@value}. */
- private static final double DEFAULT_GAMMA = 0.5;
- /** Default value for {@link #sigma}: {@value}. */
- private static final double DEFAULT_SIGMA = 0.5;
- /** Reflection coefficient. */
- private final double rho;
- /** Expansion coefficient. */
- private final double khi;
- /** Contraction coefficient. */
- private final double gamma;
- /** Shrinkage coefficient. */
- private final double sigma;
- /**
- * Build a Nelder-Mead simplex with default coefficients.
- * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
- * for both gamma and sigma.
- *
- * @param n Dimension of the simplex.
- */
- public NelderMeadSimplex(final int n) {
- this(n, 1d);
- }
- /**
- * Build a Nelder-Mead simplex with default coefficients.
- * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
- * for both gamma and sigma.
- *
- * @param n Dimension of the simplex.
- * @param sideLength Length of the sides of the default (hypercube)
- * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
- */
- public NelderMeadSimplex(final int n, double sideLength) {
- this(n, sideLength,
- DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
- }
- /**
- * Build a Nelder-Mead simplex with specified coefficients.
- *
- * @param n Dimension of the simplex. See
- * {@link AbstractSimplex#AbstractSimplex(int,double)}.
- * @param sideLength Length of the sides of the default (hypercube)
- * simplex. See {@link AbstractSimplex#AbstractSimplex(int,double)}.
- * @param rho Reflection coefficient.
- * @param khi Expansion coefficient.
- * @param gamma Contraction coefficient.
- * @param sigma Shrinkage coefficient.
- */
- public NelderMeadSimplex(final int n, double sideLength,
- final double rho, final double khi,
- final double gamma, final double sigma) {
- super(n, sideLength);
- this.rho = rho;
- this.khi = khi;
- this.gamma = gamma;
- this.sigma = sigma;
- }
- /**
- * Build a Nelder-Mead simplex with specified coefficients.
- *
- * @param n Dimension of the simplex. See
- * {@link AbstractSimplex#AbstractSimplex(int)}.
- * @param rho Reflection coefficient.
- * @param khi Expansion coefficient.
- * @param gamma Contraction coefficient.
- * @param sigma Shrinkage coefficient.
- */
- public NelderMeadSimplex(final int n,
- final double rho, final double khi,
- final double gamma, final double sigma) {
- this(n, 1d, rho, khi, gamma, sigma);
- }
- /**
- * Build a Nelder-Mead simplex with default coefficients.
- * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
- * for both gamma and sigma.
- *
- * @param steps Steps along the canonical axes representing box edges.
- * They may be negative but not zero. See
- */
- public NelderMeadSimplex(final double[] steps) {
- this(steps, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
- }
- /**
- * Build a Nelder-Mead simplex with specified coefficients.
- *
- * @param steps Steps along the canonical axes representing box edges.
- * They may be negative but not zero. See
- * {@link AbstractSimplex#AbstractSimplex(double[])}.
- * @param rho Reflection coefficient.
- * @param khi Expansion coefficient.
- * @param gamma Contraction coefficient.
- * @param sigma Shrinkage coefficient.
- * @throws IllegalArgumentException if one of the steps is zero.
- */
- public NelderMeadSimplex(final double[] steps,
- final double rho, final double khi,
- final double gamma, final double sigma) {
- super(steps);
- this.rho = rho;
- this.khi = khi;
- this.gamma = gamma;
- this.sigma = sigma;
- }
- /**
- * Build a Nelder-Mead simplex with default coefficients.
- * The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
- * for both gamma and sigma.
- *
- * @param referenceSimplex Reference simplex. See
- * {@link AbstractSimplex#AbstractSimplex(double[][])}.
- */
- public NelderMeadSimplex(final double[][] referenceSimplex) {
- this(referenceSimplex, DEFAULT_RHO, DEFAULT_KHI, DEFAULT_GAMMA, DEFAULT_SIGMA);
- }
- /**
- * Build a Nelder-Mead simplex with specified coefficients.
- *
- * @param referenceSimplex Reference simplex. See
- * {@link AbstractSimplex#AbstractSimplex(double[][])}.
- * @param rho Reflection coefficient.
- * @param khi Expansion coefficient.
- * @param gamma Contraction coefficient.
- * @param sigma Shrinkage coefficient.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if the reference simplex does not contain at least one point.
- * @throws org.hipparchus.exception.MathIllegalArgumentException
- * if there is a dimension mismatch in the reference simplex.
- */
- public NelderMeadSimplex(final double[][] referenceSimplex,
- final double rho, final double khi,
- final double gamma, final double sigma) {
- super(referenceSimplex);
- this.rho = rho;
- this.khi = khi;
- this.gamma = gamma;
- this.sigma = sigma;
- }
- /** {@inheritDoc} */
- @Override
- public void iterate(final MultivariateFunction evaluationFunction,
- final Comparator<PointValuePair> comparator) {
- // The simplex has n + 1 points if dimension is n.
- final int n = getDimension();
- // Interesting values.
- final PointValuePair best = getPoint(0);
- final PointValuePair secondBest = getPoint(n - 1);
- final PointValuePair worst = getPoint(n);
- final double[] xWorst = worst.getPointRef();
- // Compute the centroid of the best vertices (dismissing the worst
- // point at index n).
- final double[] centroid = new double[n];
- for (int i = 0; i < n; i++) {
- final double[] x = getPoint(i).getPointRef();
- for (int j = 0; j < n; j++) {
- centroid[j] += x[j];
- }
- }
- final double scaling = 1.0 / n;
- for (int j = 0; j < n; j++) {
- centroid[j] *= scaling;
- }
- // compute the reflection point
- final double[] xR = new double[n];
- for (int j = 0; j < n; j++) {
- xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
- }
- final PointValuePair reflected
- = new PointValuePair(xR, evaluationFunction.value(xR), false);
- if (comparator.compare(best, reflected) <= 0 &&
- comparator.compare(reflected, secondBest) < 0) {
- // Accept the reflected point.
- replaceWorstPoint(reflected, comparator);
- } else if (comparator.compare(reflected, best) < 0) {
- // Compute the expansion point.
- final double[] xE = new double[n];
- for (int j = 0; j < n; j++) {
- xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
- }
- final PointValuePair expanded
- = new PointValuePair(xE, evaluationFunction.value(xE), false);
- if (comparator.compare(expanded, reflected) < 0) {
- // Accept the expansion point.
- replaceWorstPoint(expanded, comparator);
- } else {
- // Accept the reflected point.
- replaceWorstPoint(reflected, comparator);
- }
- } else {
- if (comparator.compare(reflected, worst) < 0) {
- // Perform an outside contraction.
- final double[] xC = new double[n];
- for (int j = 0; j < n; j++) {
- xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
- }
- final PointValuePair outContracted
- = new PointValuePair(xC, evaluationFunction.value(xC), false);
- if (comparator.compare(outContracted, reflected) <= 0) {
- // Accept the contraction point.
- replaceWorstPoint(outContracted, comparator);
- return;
- }
- } else {
- // Perform an inside contraction.
- final double[] xC = new double[n];
- for (int j = 0; j < n; j++) {
- xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
- }
- final PointValuePair inContracted
- = new PointValuePair(xC, evaluationFunction.value(xC), false);
- if (comparator.compare(inContracted, worst) < 0) {
- // Accept the contraction point.
- replaceWorstPoint(inContracted, comparator);
- return;
- }
- }
- // Perform a shrink.
- final double[] xSmallest = getPoint(0).getPointRef();
- for (int i = 1; i <= n; i++) {
- final double[] x = getPoint(i).getPoint();
- for (int j = 0; j < n; j++) {
- x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
- }
- setPoint(i, new PointValuePair(x, Double.NaN, false));
- }
- evaluate(evaluationFunction, comparator);
- }
- }
- }