MultistepFieldIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.linear.Array2DRowFieldMatrix;
- import org.hipparchus.ode.nonstiff.AdaptiveStepsizeFieldIntegrator;
- import org.hipparchus.ode.nonstiff.DormandPrince853FieldIntegrator;
- import org.hipparchus.ode.sampling.FieldODEStateInterpolator;
- import org.hipparchus.ode.sampling.FieldODEStepHandler;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /**
- * This class is the base class for multistep integrators for Ordinary
- * Differential Equations.
- * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
- * \[
- * \left\{\begin{align}
- * s_1(n) &= h y'_n \text{ for first derivative}\\
- * s_2(n) &= \frac{h^2}{2} y_n'' \text{ for second derivative}\\
- * s_3(n) &= \frac{h^3}{6} y_n''' \text{ for third derivative}\\
- * &\cdots\\
- * s_k(n) &= \frac{h^k}{k!} y_n^{(k)} \text{ for } k^\mathrm{th} \text{ derivative}
- * \end{align}\right.
- * \]</p>
- * <p>Rather than storing several previous steps separately, this implementation uses
- * the Nordsieck vector with higher degrees scaled derivatives all taken at the same
- * step (y<sub>n</sub>, s<sub>1</sub>(n) and r<sub>n</sub>) where r<sub>n</sub> is defined as:
- * \[
- * r_n = [ s_2(n), s_3(n) \ldots s_k(n) ]^T
- * \]
- * (we omit the k index in the notation for clarity)</p>
- * <p>
- * Multistep integrators with Nordsieck representation are highly sensitive to
- * large step changes because when the step is multiplied by factor a, the
- * k<sup>th</sup> component of the Nordsieck vector is multiplied by a<sup>k</sup>
- * and the last components are the least accurate ones. The default max growth
- * factor is therefore set to a quite low value: 2<sup>1/order</sup>.
- * </p>
- *
- * @see org.hipparchus.ode.nonstiff.AdamsBashforthFieldIntegrator
- * @see org.hipparchus.ode.nonstiff.AdamsMoultonFieldIntegrator
- * @param <T> the type of the field elements
- */
- public abstract class MultistepFieldIntegrator<T extends CalculusFieldElement<T>>
- extends AdaptiveStepsizeFieldIntegrator<T> {
- /** First scaled derivative (h y'). */
- protected T[] scaled;
- /** Nordsieck matrix of the higher scaled derivatives.
- * <p>(h<sup>2</sup>/2 y'', h<sup>3</sup>/6 y''' ..., h<sup>k</sup>/k! y<sup>(k)</sup>)</p>
- */
- protected Array2DRowFieldMatrix<T> nordsieck;
- /** Starter integrator. */
- private FieldODEIntegrator<T> starter;
- /** Number of steps of the multistep method (excluding the one being computed). */
- private final int nSteps;
- /** Stepsize control exponent. */
- private double exp;
- /** Safety factor for stepsize control. */
- private double safety;
- /** Minimal reduction factor for stepsize control. */
- private double minReduction;
- /** Maximal growth factor for stepsize control. */
- private double maxGrowth;
- /**
- * Build a multistep integrator with the given stepsize bounds.
- * <p>The default starter integrator is set to the {@link
- * DormandPrince853FieldIntegrator Dormand-Prince 8(5,3)} integrator with
- * some defaults settings.</p>
- * <p>
- * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
- * </p>
- * @param field field to which the time and state vector elements belong
- * @param name name of the method
- * @param nSteps number of steps of the multistep method
- * (excluding the one being computed)
- * @param order order of the method
- * @param minStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maxStep maximal step (must be positive even for backward
- * integration)
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- * @exception MathIllegalArgumentException if number of steps is smaller than 2
- */
- protected MultistepFieldIntegrator(final Field<T> field, final String name,
- final int nSteps, final int order,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance)
- throws MathIllegalArgumentException {
- super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- if (nSteps < 2) {
- throw new MathIllegalArgumentException(LocalizedODEFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
- nSteps, 2, true);
- }
- starter = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep,
- scalAbsoluteTolerance,
- scalRelativeTolerance);
- this.nSteps = nSteps;
- exp = -1.0 / order;
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(FastMath.pow(2.0, -exp));
- }
- /**
- * Build a multistep integrator with the given stepsize bounds.
- * <p>The default starter integrator is set to the {@link
- * DormandPrince853FieldIntegrator Dormand-Prince 8(5,3)} integrator with
- * some defaults settings.</p>
- * <p>
- * The default max growth factor is set to a quite low value: 2<sup>1/order</sup>.
- * </p>
- * @param field field to which the time and state vector elements belong
- * @param name name of the method
- * @param nSteps number of steps of the multistep method
- * (excluding the one being computed)
- * @param order order of the method
- * @param minStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maxStep maximal step (must be positive even for backward
- * integration)
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- protected MultistepFieldIntegrator(final Field<T> field, final String name, final int nSteps,
- final int order,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- if (nSteps < 2) {
- throw new MathIllegalArgumentException(LocalizedODEFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
- nSteps, 2, true);
- }
- starter = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep,
- vecAbsoluteTolerance,
- vecRelativeTolerance);
- this.nSteps = nSteps;
- exp = -1.0 / order;
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(FastMath.pow(2.0, -exp));
- }
- /**
- * Get the starter integrator.
- * @return starter integrator
- */
- public FieldODEIntegrator<T> getStarterIntegrator() {
- return starter;
- }
- /**
- * Set the starter integrator.
- * <p>The various step and event handlers for this starter integrator
- * will be managed automatically by the multi-step integrator. Any
- * user configuration for these elements will be cleared before use.</p>
- * @param starterIntegrator starter integrator
- */
- public void setStarterIntegrator(FieldODEIntegrator<T> starterIntegrator) {
- this.starter = starterIntegrator;
- }
- /** Start the integration.
- * <p>This method computes one step using the underlying starter integrator,
- * and initializes the Nordsieck vector at step start. The starter integrator
- * purpose is only to establish initial conditions, it does not really change
- * time by itself. The top level multistep integrator remains in charge of
- * handling time propagation and events handling as it will starts its own
- * computation right from the beginning. In a sense, the starter integrator
- * can be seen as a dummy one and so it will never trigger any user event nor
- * call any user step handler.</p>
- * @param equations complete set of differential equations to integrate
- * @param initialState initial state (time, primary and secondary state vectors)
- * @param t target time for the integration
- * (can be set to a value smaller than <code>t0</code> for backward integration)
- * @exception MathIllegalArgumentException if arrays dimension do not match equations settings
- * @exception MathIllegalArgumentException if integration step is too small
- * @exception MathIllegalStateException if the number of functions evaluations is exceeded
- * @exception MathIllegalArgumentException if the location of an event cannot be bracketed
- */
- protected void start(final FieldExpandableODE<T> equations, final FieldODEState<T> initialState, final T t)
- throws MathIllegalArgumentException, MathIllegalStateException {
- // make sure NO user events nor user step handlers are triggered,
- // this is the task of the top level integrator, not the task of the starter integrator
- starter.clearEventDetectors();
- starter.clearStepHandlers();
- // set up one specific step handler to extract initial Nordsieck vector
- starter.addStepHandler(new FieldNordsieckInitializer((nSteps + 3) / 2));
- // start integration, expecting a InitializationCompletedMarkerException
- try {
- starter.integrate(equations, initialState, t);
- // we should not reach this step
- throw new MathIllegalStateException(LocalizedODEFormats.MULTISTEP_STARTER_STOPPED_EARLY);
- } catch (InitializationCompletedMarkerException icme) { // NOPMD
- // this is the expected nominal interruption of the start integrator
- // count the evaluations used by the starter
- getEvaluationsCounter().increment(starter.getEvaluations());
- }
- // remove the specific step handler
- starter.clearStepHandlers();
- }
- /** Initialize the high order scaled derivatives at step start.
- * @param h step size to use for scaling
- * @param t first steps times
- * @param y first steps states
- * @param yDot first steps derivatives
- * @return Nordieck vector at first step (h<sup>2</sup>/2 y''<sub>n</sub>,
- * h<sup>3</sup>/6 y'''<sub>n</sub> ... h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub>)
- */
- protected abstract Array2DRowFieldMatrix<T> initializeHighOrderDerivatives(T h, T[] t, T[][] y, T[][] yDot);
- /** Get the minimal reduction factor for stepsize control.
- * @return minimal reduction factor
- */
- public double getMinReduction() {
- return minReduction;
- }
- /** Set the minimal reduction factor for stepsize control.
- * @param minReduction minimal reduction factor
- */
- public void setMinReduction(final double minReduction) {
- this.minReduction = minReduction;
- }
- /** Get the maximal growth factor for stepsize control.
- * @return maximal growth factor
- */
- public double getMaxGrowth() {
- return maxGrowth;
- }
- /** Set the maximal growth factor for stepsize control.
- * @param maxGrowth maximal growth factor
- */
- public void setMaxGrowth(final double maxGrowth) {
- this.maxGrowth = maxGrowth;
- }
- /** Get the safety factor for stepsize control.
- * @return safety factor
- */
- public double getSafety() {
- return safety;
- }
- /** Set the safety factor for stepsize control.
- * @param safety safety factor
- */
- public void setSafety(final double safety) {
- this.safety = safety;
- }
- /** Get the number of steps of the multistep method (excluding the one being computed).
- * @return number of steps of the multistep method (excluding the one being computed)
- */
- public int getNSteps() {
- return nSteps;
- }
- /** Rescale the instance.
- * <p>Since the scaled and Nordsieck arrays are shared with the caller,
- * this method has the side effect of rescaling this arrays in the caller too.</p>
- * @param newStepSize new step size to use in the scaled and Nordsieck arrays
- */
- protected void rescale(final T newStepSize) {
- final T ratio = newStepSize.divide(getStepSize());
- for (int i = 0; i < scaled.length; ++i) {
- scaled[i] = scaled[i].multiply(ratio);
- }
- final T[][] nData = nordsieck.getDataRef();
- T power = ratio;
- for (int i = 0; i < nData.length; ++i) {
- power = power.multiply(ratio);
- final T[] nDataI = nData[i];
- for (int j = 0; j < nDataI.length; ++j) {
- nDataI[j] = nDataI[j].multiply(power);
- }
- }
- setStepSize(newStepSize);
- }
- /** Compute step grow/shrink factor according to normalized error.
- * @param error normalized error of the current step
- * @return grow/shrink factor for next step
- */
- protected double computeStepGrowShrinkFactor(final double error) {
- return FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
- }
- /** Specialized step handler storing the first step.
- */
- private class FieldNordsieckInitializer implements FieldODEStepHandler<T> {
- /** Steps counter. */
- private int count;
- /** Saved start. */
- private FieldODEStateAndDerivative<T> savedStart;
- /** First steps times. */
- private final T[] t;
- /** First steps states. */
- private final T[][] y;
- /** First steps derivatives. */
- private final T[][] yDot;
- /** Simple constructor.
- * @param nbStartPoints number of start points (including the initial point)
- */
- FieldNordsieckInitializer(final int nbStartPoints) {
- this.count = 0;
- this.t = MathArrays.buildArray(getField(), nbStartPoints);
- this.y = MathArrays.buildArray(getField(), nbStartPoints, -1);
- this.yDot = MathArrays.buildArray(getField(), nbStartPoints, -1);
- }
- /** {@inheritDoc} */
- @Override
- public void handleStep(FieldODEStateInterpolator<T> interpolator) {
- if (count == 0) {
- // first step, we need to store also the point at the beginning of the step
- final FieldODEStateAndDerivative<T> prev = interpolator.getPreviousState();
- savedStart = prev;
- t[count] = prev.getTime();
- y[count] = prev.getCompleteState();
- yDot[count] = prev.getCompleteDerivative();
- }
- // store the point at the end of the step
- ++count;
- final FieldODEStateAndDerivative<T> curr = interpolator.getCurrentState();
- t[count] = curr.getTime();
- y[count] = curr.getCompleteState();
- yDot[count] = curr.getCompleteDerivative();
- if (count == t.length - 1) {
- // this was the last point we needed, we can compute the derivatives
- setStepStart(savedStart);
- final T rawStep = t[t.length - 1].subtract(t[0]).divide(t.length - 1);
- setStepSize(getStepSizeHelper().filterStep(rawStep, rawStep.getReal() >= 0, true));
- // first scaled derivative
- scaled = MathArrays.buildArray(getField(), yDot[0].length);
- for (int j = 0; j < scaled.length; ++j) {
- scaled[j] = yDot[0][j].multiply(getStepSize());
- }
- // higher order derivatives
- nordsieck = initializeHighOrderDerivatives(getStepSize(), t, y, yDot);
- // stop the integrator now that all needed steps have been handled
- throw new InitializationCompletedMarkerException();
- }
- }
- /** {@inheritDoc} */
- @Override
- public void init(final FieldODEStateAndDerivative<T> initialState, T finalTime) {
- // nothing to do
- }
- }
- /** Marker exception used ONLY to stop the starter integrator after first step. */
- private static class InitializationCompletedMarkerException
- extends RuntimeException {
- /** Serializable version identifier. */
- private static final long serialVersionUID = -1914085471038046418L;
- /** Simple constructor. */
- InitializationCompletedMarkerException() {
- super((Throwable) null);
- }
- }
- }