DenseOutputModel.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode;
- import java.io.Serializable;
- import java.util.ArrayList;
- import java.util.List;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.ode.sampling.ODEStateInterpolator;
- import org.hipparchus.ode.sampling.ODEStepHandler;
- import org.hipparchus.util.FastMath;
- /**
- * This class stores all information provided by an ODE integrator
- * during the integration process and build a continuous model of the
- * solution from this.
- *
- * <p>This class act as a step handler from the integrator point of
- * view. It is called iteratively during the integration process and
- * stores a copy of all steps information in a sorted collection for
- * later use. Once the integration process is over, the user can use
- * the {@link #getInterpolatedState(double) getInterpolatedState}
- * method to retrieve this information at any time. It is important
- * to wait for the integration to be over before attempting to call
- * {@link #getInterpolatedState(double) getInterpolatedState} because
- * some internal variables are set only once the last step has been
- * handled.</p>
- *
- * <p>This is useful for example if the main loop of the user
- * application should remain independent from the integration process
- * or if one needs to mimic the behaviour of an analytical model
- * despite a numerical model is used (i.e. one needs the ability to
- * get the model value at any time or to navigate through the
- * data).</p>
- *
- * <p>If problem modeling is done with several separate
- * integration phases for contiguous intervals, the same
- * DenseOutputModel can be used as step handler for all
- * integration phases as long as they are performed in order and in
- * the same direction. As an example, one can extrapolate the
- * trajectory of a satellite with one model (i.e. one set of
- * differential equations) up to the beginning of a maneuver, use
- * another more complex model including thrusters modeling and
- * accurate attitude control during the maneuver, and revert to the
- * first model after the end of the maneuver. If the same continuous
- * output model handles the steps of all integration phases, the user
- * do not need to bother when the maneuver begins or ends, he has all
- * the data available in a transparent manner.</p>
- *
- * <p>An important feature of this class is that it implements the
- * <code>Serializable</code> interface. This means that the result of
- * an integration can be serialized and reused later (if stored into a
- * persistent medium like a filesystem or a database) or elsewhere (if
- * sent to another application). Only the result of the integration is
- * stored, there is no reference to the integrated problem by
- * itself.</p>
- *
- * <p>One should be aware that the amount of data stored in a
- * DenseOutputModel instance can be important if the state vector
- * is large, if the integration interval is long or if the steps are
- * small (which can result from small tolerance settings in {@link
- * org.hipparchus.ode.nonstiff.AdaptiveStepsizeIntegrator adaptive
- * step size integrators}).</p>
- *
- * @see ODEStepHandler
- * @see ODEStateInterpolator
- */
- public class DenseOutputModel implements ODEStepHandler, Serializable {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20160328L;
- /** Initial integration time. */
- private double initialTime;
- /** Final integration time. */
- private double finalTime;
- /** Integration direction indicator. */
- private boolean forward;
- /** Current interpolator index. */
- private int index;
- /** Steps table. */
- private List<ODEStateInterpolator> steps;
- /** Simple constructor.
- * Build an empty continuous output model.
- */
- public DenseOutputModel() {
- steps = new ArrayList<>();
- initialTime = Double.NaN;
- finalTime = Double.NaN;
- forward = true;
- index = 0;
- }
- /** Append another model at the end of the instance.
- * @param model model to add at the end of the instance
- * @exception MathIllegalArgumentException if the model to append is not
- * compatible with the instance (dimension of the state vector,
- * propagation direction, hole between the dates)
- * @exception MathIllegalStateException if the number of functions evaluations is exceeded
- * during step finalization
- */
- public void append(final DenseOutputModel model)
- throws MathIllegalArgumentException, MathIllegalStateException {
- if (model.steps.isEmpty()) {
- return;
- }
- if (steps.isEmpty()) {
- initialTime = model.initialTime;
- forward = model.forward;
- } else {
- final ODEStateAndDerivative s1 = steps.get(0).getPreviousState();
- final ODEStateAndDerivative s2 = model.steps.get(0).getPreviousState();
- checkDimensionsEquality(s1.getPrimaryStateDimension(), s2.getPrimaryStateDimension());
- checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates());
- for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) {
- checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i));
- }
- if (forward ^ model.forward) {
- throw new MathIllegalArgumentException(LocalizedODEFormats.PROPAGATION_DIRECTION_MISMATCH);
- }
- final ODEStateInterpolator lastInterpolator = steps.get(index);
- final double current = lastInterpolator.getCurrentState().getTime();
- final double previous = lastInterpolator.getPreviousState().getTime();
- final double step = current - previous;
- final double gap = model.getInitialTime() - current;
- if (FastMath.abs(gap) > 1.0e-3 * FastMath.abs(step)) {
- throw new MathIllegalArgumentException(LocalizedODEFormats.HOLE_BETWEEN_MODELS_TIME_RANGES,
- FastMath.abs(gap));
- }
- }
- for (ODEStateInterpolator interpolator : model.steps) {
- steps.add(interpolator);
- }
- index = steps.size() - 1;
- finalTime = (steps.get(index)).getCurrentState().getTime();
- }
- /** Check dimensions equality.
- * @param d1 first dimension
- * @param d2 second dimansion
- * @exception MathIllegalArgumentException if dimensions do not match
- */
- private void checkDimensionsEquality(final int d1, final int d2)
- throws MathIllegalArgumentException {
- if (d1 != d2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- d2, d1);
- }
- }
- /** {@inheritDoc} */
- @Override
- public void init(final ODEStateAndDerivative initialState, final double targetTime) {
- initialTime = initialState.getTime();
- this.finalTime = targetTime;
- forward = true;
- index = 0;
- steps.clear();
- }
- /** {@inheritDoc} */
- @Override
- public void handleStep(final ODEStateInterpolator interpolator) {
- if (steps.isEmpty()) {
- initialTime = interpolator.getPreviousState().getTime();
- forward = interpolator.isForward();
- }
- steps.add(interpolator);
- }
- /** {@inheritDoc} */
- @Override
- public void finish(final ODEStateAndDerivative finalState) {
- finalTime = finalState.getTime();
- index = steps.size() - 1;
- }
- /**
- * Get the initial integration time.
- * @return initial integration time
- */
- public double getInitialTime() {
- return initialTime;
- }
- /**
- * Get the final integration time.
- * @return final integration time
- */
- public double getFinalTime() {
- return finalTime;
- }
- /**
- * Get the state at interpolated time.
- * @param time time of the interpolated point
- * @return state at interpolated time
- */
- public ODEStateAndDerivative getInterpolatedState(final double time) {
- // initialize the search with the complete steps table
- int iMin = 0;
- final ODEStateInterpolator sMin = steps.get(iMin);
- double tMin = 0.5 * (sMin.getPreviousState().getTime() + sMin.getCurrentState().getTime());
- int iMax = steps.size() - 1;
- final ODEStateInterpolator sMax = steps.get(iMax);
- double tMax = 0.5 * (sMax.getPreviousState().getTime() + sMax.getCurrentState().getTime());
- // handle points outside of the integration interval
- // or in the first and last step
- if (locatePoint(time, sMin) <= 0) {
- index = iMin;
- return sMin.getInterpolatedState(time);
- }
- if (locatePoint(time, sMax) >= 0) {
- index = iMax;
- return sMax.getInterpolatedState(time);
- }
- // reduction of the table slice size
- while (iMax - iMin > 5) {
- // use the last estimated index as the splitting index
- final ODEStateInterpolator si = steps.get(index);
- final int location = locatePoint(time, si);
- if (location < 0) {
- iMax = index;
- tMax = 0.5 * (si.getPreviousState().getTime() + si.getCurrentState().getTime());
- } else if (location > 0) {
- iMin = index;
- tMin = 0.5 * (si.getPreviousState().getTime() + si.getCurrentState().getTime());
- } else {
- // we have found the target step, no need to continue searching
- return si.getInterpolatedState(time);
- }
- // compute a new estimate of the index in the reduced table slice
- final int iMed = (iMin + iMax) / 2;
- final ODEStateInterpolator sMed = steps.get(iMed);
- final double tMed = 0.5 * (sMed.getPreviousState().getTime() + sMed.getCurrentState().getTime());
- if ((FastMath.abs(tMed - tMin) < 1e-6) || (FastMath.abs(tMax - tMed) < 1e-6)) {
- // too close to the bounds, we estimate using a simple dichotomy
- index = iMed;
- } else {
- // estimate the index using a reverse quadratic polynom
- // (reverse means we have i = P(t), thus allowing to simply
- // compute index = P(time) rather than solving a quadratic equation)
- final double d12 = tMax - tMed;
- final double d23 = tMed - tMin;
- final double d13 = tMax - tMin;
- final double dt1 = time - tMax;
- final double dt2 = time - tMed;
- final double dt3 = time - tMin;
- final double iLagrange = ((dt2 * dt3 * d23) * iMax -
- (dt1 * dt3 * d13) * iMed +
- (dt1 * dt2 * d12) * iMin) /
- (d12 * d23 * d13);
- index = (int) FastMath.rint(iLagrange);
- }
- // force the next size reduction to be at least one tenth
- final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
- final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
- if (index < low) {
- index = low;
- } else if (index > high) {
- index = high;
- }
- }
- // now the table slice is very small, we perform an iterative search
- index = iMin;
- while ((index <= iMax) && (locatePoint(time, steps.get(index)) > 0)) {
- ++index;
- }
- return steps.get(index).getInterpolatedState(time);
- }
- /** Compare a step interval and a double.
- * @param time point to locate
- * @param interval step interval
- * @return -1 if the double is before the interval, 0 if it is in
- * the interval, and +1 if it is after the interval, according to
- * the interval direction
- */
- private int locatePoint(final double time, final ODEStateInterpolator interval) {
- if (forward) {
- if (time < interval.getPreviousState().getTime()) {
- return -1;
- } else if (time > interval.getCurrentState().getTime()) {
- return +1;
- } else {
- return 0;
- }
- }
- if (time > interval.getPreviousState().getTime()) {
- return -1;
- } else if (time < interval.getCurrentState().getTime()) {
- return +1;
- } else {
- return 0;
- }
- }
- }