ThreeEighthesFieldStateInterpolator.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */

package org.hipparchus.ode.nonstiff;

import org.hipparchus.CalculusFieldElement;
import org.hipparchus.Field;
import org.hipparchus.ode.FieldEquationsMapper;
import org.hipparchus.ode.FieldODEStateAndDerivative;

/**
 * This class implements a step interpolator for the 3/8 fourth
 * order Runge-Kutta integrator.
 *
 * <p>This interpolator allows to compute dense output inside the last
 * step computed. The interpolation equation is consistent with the
 * integration scheme :</p>
 * <ul>
 *   <li>Using reference point at step start:<br>
 *     y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
 *                      + &theta; (h/8) [ (8 - 15 &theta; +  8 &theta;<sup>2</sup>) y'<sub>1</sub>
 *                                     +  3 * (15 &theta; - 12 &theta;<sup>2</sup>) y'<sub>2</sub>
 *                                     +        3 &theta;                           y'<sub>3</sub>
 *                                     +      (-3 &theta; +  4 &theta;<sup>2</sup>) y'<sub>4</sub>
 *                                    ]
 *   </li>
 *   <li>Using reference point at step end:<br>
 *     y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
 *                      - (1 - &theta;) (h/8) [(1 - 7 &theta; + 8 &theta;<sup>2</sup>) y'<sub>1</sub>
 *                                         + 3 (1 +   &theta; - 4 &theta;<sup>2</sup>) y'<sub>2</sub>
 *                                         + 3 (1 +   &theta;)                         y'<sub>3</sub>
 *                                         +   (1 +   &theta; + 4 &theta;<sup>2</sup>) y'<sub>4</sub>
 *                                          ]
 *   </li>
 * </ul>
 *
 * <p>where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub> are the four
 * evaluations of the derivatives already computed during the
 * step.</p>
 *
 * @see ThreeEighthesFieldIntegrator
 * @param <T> the type of the field elements
 */

class ThreeEighthesFieldStateInterpolator<T extends CalculusFieldElement<T>>
      extends RungeKuttaFieldStateInterpolator<T> {

    /** Simple constructor.
     * @param field field to which the time and state vector elements belong
     * @param forward integration direction indicator
     * @param yDotK slopes at the intermediate points
     * @param globalPreviousState start of the global step
     * @param globalCurrentState end of the global step
     * @param softPreviousState start of the restricted step
     * @param softCurrentState end of the restricted step
     * @param mapper equations mapper for the all equations
     */
    ThreeEighthesFieldStateInterpolator(final Field<T> field, final boolean forward,
                                        final T[][] yDotK,
                                        final FieldODEStateAndDerivative<T> globalPreviousState,
                                        final FieldODEStateAndDerivative<T> globalCurrentState,
                                        final FieldODEStateAndDerivative<T> softPreviousState,
                                        final FieldODEStateAndDerivative<T> softCurrentState,
                                        final FieldEquationsMapper<T> mapper) {
        super(field, forward, yDotK,
              globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
              mapper);
    }

    /** {@inheritDoc} */
    @Override
    protected ThreeEighthesFieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
                                                            final FieldODEStateAndDerivative<T> newGlobalPreviousState,
                                                            final FieldODEStateAndDerivative<T> newGlobalCurrentState,
                                                            final FieldODEStateAndDerivative<T> newSoftPreviousState,
                                                            final FieldODEStateAndDerivative<T> newSoftCurrentState,
                                                            final FieldEquationsMapper<T> newMapper) {
        return new ThreeEighthesFieldStateInterpolator<T>(newField, newForward, newYDotK,
                                                          newGlobalPreviousState, newGlobalCurrentState,
                                                          newSoftPreviousState, newSoftCurrentState,
                                                          newMapper);
    }

    /** {@inheritDoc} */
    @SuppressWarnings("unchecked")
    @Override
    protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
                                                                                   final T time, final T theta,
                                                                                   final T thetaH, final T oneMinusThetaH) {

        final T coeffDot3  = theta.multiply(0.75);
        final T coeffDot1  = coeffDot3.multiply(theta.multiply(4).subtract(5)).add(1);
        final T coeffDot2  = coeffDot3.multiply(theta.multiply(-6).add(5));
        final T coeffDot4  = coeffDot3.multiply(theta.multiply(2).subtract(1));
        final T[] interpolatedState;
        final T[] interpolatedDerivatives;

        if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
            final T s          = thetaH.divide(8);
            final T fourTheta2 = theta.multiply(theta).multiply(4);
            final T coeff1     = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(15)).add(8));
            final T coeff2     = s.multiply(theta.multiply(5).subtract(fourTheta2)).multiply(3);
            final T coeff3     = s.multiply(theta).multiply(3);
            final T coeff4     = s.multiply(fourTheta2.subtract(theta.multiply(3)));
            interpolatedState       = previousStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
        } else {
            final T s          = oneMinusThetaH.divide(-8);
            final T fourTheta2 = theta.multiply(theta).multiply(4);
            final T thetaPlus1 = theta.add(1);
            final T coeff1     = s.multiply(fourTheta2.multiply(2).subtract(theta.multiply(7)).add(1));
            final T coeff2     = s.multiply(thetaPlus1.subtract(fourTheta2)).multiply(3);
            final T coeff3     = s.multiply(thetaPlus1).multiply(3);
            final T coeff4     = s.multiply(thetaPlus1.add(fourTheta2));
            interpolatedState       = currentStateLinearCombination(coeff1, coeff2, coeff3, coeff4);
            interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4);
        }

        return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);

    }

}