EulerFieldIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.interpolators.EulerFieldStateInterpolator;
- import org.hipparchus.util.MathArrays;
- /**
- * This class implements a simple Euler integrator for Ordinary
- * Differential Equations.
- *
- * <p>The Euler algorithm is the simplest one that can be used to
- * integrate ordinary differential equations. It is a simple inversion
- * of the forward difference expression :
- * <code>f'=(f(t+h)-f(t))/h</code> which leads to
- * <code>f(t+h)=f(t)+hf'</code>. The interpolation scheme used for
- * dense output is the linear scheme already used for integration.</p>
- *
- * <p>This algorithm looks cheap because it needs only one function
- * evaluation per step. However, as it uses linear estimates, it needs
- * very small steps to achieve high accuracy, and small steps lead to
- * numerical errors and instabilities.</p>
- *
- * <p>This algorithm is almost never used and has been included in
- * this package only as a comparison reference for more useful
- * integrators.</p>
- *
- * @see MidpointFieldIntegrator
- * @see ClassicalRungeKuttaFieldIntegrator
- * @see GillFieldIntegrator
- * @see ThreeEighthesFieldIntegrator
- * @see LutherFieldIntegrator
- * @param <T> the type of the field elements
- */
- public class EulerFieldIntegrator<T extends CalculusFieldElement<T>> extends FixedStepRungeKuttaFieldIntegrator<T> {
- /** Name of integration scheme. */
- public static final String METHOD_NAME = EulerIntegrator.METHOD_NAME;
- /** Simple constructor.
- * Build an Euler integrator with the given step.
- * @param field field to which the time and state vector elements belong
- * @param step integration step
- */
- public EulerFieldIntegrator(final Field<T> field, final T step) {
- super(field, METHOD_NAME, step);
- }
- /** {@inheritDoc} */
- @Override
- public T[] getC() {
- return MathArrays.buildArray(getField(), 0);
- }
- /** {@inheritDoc} */
- @Override
- public T[][] getA() {
- return MathArrays.buildArray(getField(), 0, 0);
- }
- /** {@inheritDoc} */
- @Override
- public T[] getB() {
- final T[] b = MathArrays.buildArray(getField(), 1);
- b[0] = getField().getOne();
- return b;
- }
- /** {@inheritDoc} */
- @Override
- protected EulerFieldStateInterpolator<T>
- createInterpolator(final boolean forward, T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldEquationsMapper<T> mapper) {
- return new EulerFieldStateInterpolator<>(getField(), forward, yDotK,
- globalPreviousState, globalCurrentState,
- globalPreviousState, globalCurrentState,
- mapper);
- }
- }