EmbeddedRungeKuttaIntegrator.java

/*
 * Licensed to the Hipparchus project under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.hipparchus.ode.nonstiff;

import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathIllegalStateException;
import org.hipparchus.ode.EquationsMapper;
import org.hipparchus.ode.ExpandableODE;
import org.hipparchus.ode.LocalizedODEFormats;
import org.hipparchus.ode.ODEState;
import org.hipparchus.ode.ODEStateAndDerivative;
import org.hipparchus.util.FastMath;

/**
 * This class implements the common part of all embedded Runge-Kutta
 * integrators for Ordinary Differential Equations.
 *
 * <p>These methods are embedded explicit Runge-Kutta methods with two
 * sets of coefficients allowing to estimate the error, their Butcher
 * arrays are as follows :</p>
 * <pre>
 *    0  |
 *   c2  | a21
 *   c3  | a31  a32
 *   ... |        ...
 *   cs  | as1  as2  ...  ass-1
 *       |--------------------------
 *       |  b1   b2  ...   bs-1  bs
 *       |  b'1  b'2 ...   b's-1 b's
 * </pre>
 *
 * <p>In fact, we rather use the array defined by ej = bj - b'j to
 * compute directly the error rather than computing two estimates and
 * then comparing them.</p>
 *
 * <p>Some methods are qualified as <i>fsal</i> (first same as last)
 * methods. This means the last evaluation of the derivatives in one
 * step is the same as the first in the next step. Then, this
 * evaluation can be reused from one step to the next one and the cost
 * of such a method is really s-1 evaluations despite the method still
 * has s stages. This behaviour is true only for successful steps, if
 * the step is rejected after the error estimation phase, no
 * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
 * asi = bi for all i.</p>
 *
 */

public abstract class EmbeddedRungeKuttaIntegrator
    extends AdaptiveStepsizeIntegrator
    implements ExplicitRungeKuttaIntegrator {

    /** Index of the pre-computed derivative for <i>fsal</i> methods. */
    private final int fsal;

    /** Time steps from Butcher array (without the first zero). */
    private final double[] c;

    /** Internal weights from Butcher array (without the first empty row). */
    private final double[][] a;

    /** External weights for the high order method from Butcher array. */
    private final double[] b;

    /** Stepsize control exponent. */
    private final double exp;

    /** Safety factor for stepsize control. */
    private double safety;

    /** Minimal reduction factor for stepsize control. */
    private double minReduction;

    /** Maximal growth factor for stepsize control. */
    private double maxGrowth;

    /** Build a Runge-Kutta integrator with the given Butcher array.
     * @param name name of the method
     * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
     * or -1 if method is not <i>fsal</i>
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     */
    protected EmbeddedRungeKuttaIntegrator(final String name, final int fsal,
                                           final double minStep, final double maxStep,
                                           final double scalAbsoluteTolerance,
                                           final double scalRelativeTolerance) {

        super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);

        this.fsal = fsal;
        this.c    = getC();
        this.a    = getA();
        this.b    = getB();

        exp = -1.0 / getOrder();

        // set the default values of the algorithm control parameters
        setSafety(0.9);
        setMinReduction(0.2);
        setMaxGrowth(10.0);

    }

    /** Build a Runge-Kutta integrator with the given Butcher array.
     * @param name name of the method
     * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
     * or -1 if method is not <i>fsal</i>
     * @param minStep minimal step (must be positive even for backward
     * integration), the last step can be smaller than this
     * @param maxStep maximal step (must be positive even for backward
     * integration)
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     */
    protected EmbeddedRungeKuttaIntegrator(final String name, final int fsal,
                                           final double   minStep, final double maxStep,
                                           final double[] vecAbsoluteTolerance,
                                           final double[] vecRelativeTolerance) {

        super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);

        this.fsal = fsal;
        this.c    = getC();
        this.a    = getA();
        this.b    = getB();

        exp = -1.0 / getOrder();

        // set the default values of the algorithm control parameters
        setSafety(0.9);
        setMinReduction(0.2);
        setMaxGrowth(10.0);

    }

    /** Create an interpolator.
     * @param forward integration direction indicator
     * @param yDotK slopes at the intermediate points
     * @param globalPreviousState start of the global step
     * @param globalCurrentState end of the global step
     * @param mapper equations mapper for the all equations
     * @return external weights for the high order method from Butcher array
     */
    protected abstract RungeKuttaStateInterpolator createInterpolator(boolean forward, double[][] yDotK,
                                                                     ODEStateAndDerivative globalPreviousState,
                                                                     ODEStateAndDerivative globalCurrentState,
                                                                     EquationsMapper mapper);
    /** Get the order of the method.
     * @return order of the method
     */
    public abstract int getOrder();

    /** Get the safety factor for stepsize control.
     * @return safety factor
     */
    public double getSafety() {
        return safety;
    }

    /** Set the safety factor for stepsize control.
     * @param safety safety factor
     */
    public void setSafety(final double safety) {
        this.safety = safety;
    }

    /** {@inheritDoc} */
    @Override
    public ODEStateAndDerivative integrate(final ExpandableODE equations,
                                           final ODEState initialState, final double finalTime)
        throws MathIllegalArgumentException, MathIllegalStateException {

        sanityChecks(initialState, finalTime);
        setStepStart(initIntegration(equations, initialState, finalTime));
        final boolean forward = finalTime > initialState.getTime();

        // create some internal working arrays
        final int        stages  = c.length + 1;
        final double[][] yDotK   = new double[stages][];
        double[]   yTmp    = new double[equations.getMapper().getTotalDimension()];

        // set up integration control objects
        double  hNew      = 0;
        boolean firstTime = true;

        // main integration loop
        setIsLastStep(false);
        do {

            // iterate over step size, ensuring local normalized error is smaller than 1
            double error = 10;
            while (error >= 1.0) {

                // first stage
                final double[] y = getStepStart().getCompleteState();
                yDotK[0] = getStepStart().getCompleteDerivative();

                if (firstTime) {
                    final StepsizeHelper helper = getStepSizeHelper();
                    final double[] scale = new double[helper.getMainSetDimension()];
                    for (int i = 0; i < scale.length; ++i) {
                        scale[i] = helper.getTolerance(i, FastMath.abs(y[i]));
                    }
                    hNew = initializeStep(forward, getOrder(), scale, getStepStart());
                    firstTime = false;
                }

                setStepSize(hNew);
                if (forward) {
                    if (getStepStart().getTime() + getStepSize() >= finalTime) {
                        setStepSize(finalTime - getStepStart().getTime());
                    }
                } else {
                    if (getStepStart().getTime() + getStepSize() <= finalTime) {
                        setStepSize(finalTime - getStepStart().getTime());
                    }
                }

                // next stages
                ExplicitRungeKuttaIntegrator.applyInternalButcherWeights(getEquations(), getStepStart().getTime(), y,
                        getStepSize(), a, c, yDotK);
                yTmp = ExplicitRungeKuttaIntegrator.applyExternalButcherWeights(y, yDotK, getStepSize(), b);

                incrementEvaluations(stages - 1);

                // estimate the error at the end of the step
                error = estimateError(yDotK, y, yTmp, getStepSize());
                if (Double.isNaN(error)) {
                    throw new MathIllegalStateException(LocalizedODEFormats.NAN_APPEARING_DURING_INTEGRATION,
                                                        getStepStart().getTime() + getStepSize());
                }
                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor =
                                    FastMath.min(maxGrowth,
                                                 FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
                    hNew = getStepSizeHelper().filterStep(getStepSize() * factor, forward, false);
                }

            }
            final double   stepEnd = getStepStart().getTime() + getStepSize();
            final double[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
            final ODEStateAndDerivative stateTmp = equations.getMapper().mapStateAndDerivative(stepEnd, yTmp, yDotTmp);

            // local error is small enough: accept the step, trigger events and step handlers
            setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()), finalTime));

            if (!isLastStep()) {

                // stepsize control for next step
                final double factor =
                                FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
                final double  scaledH    = getStepSize() * factor;
                final double  nextT      = getStepStart().getTime() + scaledH;
                final boolean nextIsLast = forward ? (nextT >= finalTime) : (nextT <= finalTime);
                hNew = getStepSizeHelper().filterStep(scaledH, forward, nextIsLast);

                final double  filteredNextT      = getStepStart().getTime() + hNew;
                final boolean filteredNextIsLast = forward ? (filteredNextT >= finalTime) : (filteredNextT <= finalTime);
                if (filteredNextIsLast) {
                    hNew = finalTime - getStepStart().getTime();
                }

            }

        } while (!isLastStep());

        final ODEStateAndDerivative finalState = getStepStart();
        resetInternalState();
        return finalState;

    }

    /** Get the minimal reduction factor for stepsize control.
     * @return minimal reduction factor
     */
    public double getMinReduction() {
        return minReduction;
    }

    /** Set the minimal reduction factor for stepsize control.
     * @param minReduction minimal reduction factor
     */
    public void setMinReduction(final double minReduction) {
        this.minReduction = minReduction;
    }

    /** Get the maximal growth factor for stepsize control.
     * @return maximal growth factor
     */
    public double getMaxGrowth() {
        return maxGrowth;
    }

    /** Set the maximal growth factor for stepsize control.
     * @param maxGrowth maximal growth factor
     */
    public void setMaxGrowth(final double maxGrowth) {
        this.maxGrowth = maxGrowth;
    }

    /** Compute the error ratio.
     * @param yDotK derivatives computed during the first stages
     * @param y0 estimate of the step at the start of the step
     * @param y1 estimate of the step at the end of the step
     * @param h  current step
     * @return error ratio, greater than 1 if step should be rejected
     */
    protected abstract double estimateError(double[][] yDotK,
                                            double[] y0, double[] y1,
                                            double h);

}