EmbeddedRungeKuttaIntegrator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.ExpandableODE;
- import org.hipparchus.ode.LocalizedODEFormats;
- import org.hipparchus.ode.ODEState;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.interpolators.RungeKuttaStateInterpolator;
- import org.hipparchus.util.FastMath;
- /**
- * This class implements the common part of all embedded Runge-Kutta
- * integrators for Ordinary Differential Equations.
- *
- * <p>These methods are embedded explicit Runge-Kutta methods with two
- * sets of coefficients allowing to estimate the error, their Butcher
- * arrays are as follows :</p>
- * <pre>
- * 0 |
- * c2 | a21
- * c3 | a31 a32
- * ... | ...
- * cs | as1 as2 ... ass-1
- * |--------------------------
- * | b1 b2 ... bs-1 bs
- * | b'1 b'2 ... b's-1 b's
- * </pre>
- *
- * <p>In fact, we rather use the array defined by ej = bj - b'j to
- * compute directly the error rather than computing two estimates and
- * then comparing them.</p>
- *
- * <p>Some methods are qualified as <i>fsal</i> (first same as last)
- * methods. This means the last evaluation of the derivatives in one
- * step is the same as the first in the next step. Then, this
- * evaluation can be reused from one step to the next one and the cost
- * of such a method is really s-1 evaluations despite the method still
- * has s stages. This behaviour is true only for successful steps, if
- * the step is rejected after the error estimation phase, no
- * evaluation is saved. For an <i>fsal</i> method, we have cs = 1 and
- * asi = bi for all i.</p>
- *
- */
- public abstract class EmbeddedRungeKuttaIntegrator
- extends AdaptiveStepsizeIntegrator
- implements ExplicitRungeKuttaIntegrator {
- /** Index of the pre-computed derivative for <i>fsal</i> methods. */
- private final int fsal;
- /** Time steps from Butcher array (without the first zero). */
- private final double[] c;
- /** Internal weights from Butcher array (without the first empty row). */
- private final double[][] a;
- /** External weights for the high order method from Butcher array. */
- private final double[] b;
- /** Stepsize control exponent. */
- private final double exp;
- /** Safety factor for stepsize control. */
- private double safety;
- /** Minimal reduction factor for stepsize control. */
- private double minReduction;
- /** Maximal growth factor for stepsize control. */
- private double maxGrowth;
- /** Build a Runge-Kutta integrator with the given Butcher array.
- * @param name name of the method
- * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
- * or -1 if method is not <i>fsal</i>
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- */
- protected EmbeddedRungeKuttaIntegrator(final String name, final int fsal,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance) {
- super(name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- this.fsal = fsal;
- this.c = getC();
- this.a = getA();
- this.b = getB();
- exp = -1.0 / getOrder();
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(10.0);
- }
- /** Build a Runge-Kutta integrator with the given Butcher array.
- * @param name name of the method
- * @param fsal index of the pre-computed derivative for <i>fsal</i> methods
- * or -1 if method is not <i>fsal</i>
- * @param minStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maxStep maximal step (must be positive even for backward
- * integration)
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- protected EmbeddedRungeKuttaIntegrator(final String name, final int fsal,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- this.fsal = fsal;
- this.c = getC();
- this.a = getA();
- this.b = getB();
- exp = -1.0 / getOrder();
- // set the default values of the algorithm control parameters
- setSafety(0.9);
- setMinReduction(0.2);
- setMaxGrowth(10.0);
- }
- /** Create an interpolator.
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param mapper equations mapper for the all equations
- * @return external weights for the high order method from Butcher array
- */
- protected abstract RungeKuttaStateInterpolator createInterpolator(boolean forward, double[][] yDotK,
- ODEStateAndDerivative globalPreviousState,
- ODEStateAndDerivative globalCurrentState,
- EquationsMapper mapper);
- /** Get the order of the method.
- * @return order of the method
- */
- public abstract int getOrder();
- /** Get the safety factor for stepsize control.
- * @return safety factor
- */
- public double getSafety() {
- return safety;
- }
- /** Set the safety factor for stepsize control.
- * @param safety safety factor
- */
- public void setSafety(final double safety) {
- this.safety = safety;
- }
- /** {@inheritDoc} */
- @Override
- public ODEStateAndDerivative integrate(final ExpandableODE equations,
- final ODEState initialState, final double finalTime)
- throws MathIllegalArgumentException, MathIllegalStateException {
- sanityChecks(initialState, finalTime);
- setStepStart(initIntegration(equations, initialState, finalTime));
- final boolean forward = finalTime > initialState.getTime();
- // create some internal working arrays
- final int stages = c.length + 1;
- final double[][] yDotK = new double[stages][];
- double[] yTmp = new double[equations.getMapper().getTotalDimension()];
- // set up integration control objects
- double hNew = 0;
- boolean firstTime = true;
- // main integration loop
- setIsLastStep(false);
- do {
- // iterate over step size, ensuring local normalized error is smaller than 1
- double error = 10;
- while (error >= 1.0) {
- // first stage
- final double[] y = getStepStart().getCompleteState();
- yDotK[0] = getStepStart().getCompleteDerivative();
- if (firstTime) {
- final StepsizeHelper helper = getStepSizeHelper();
- final double[] scale = new double[helper.getMainSetDimension()];
- for (int i = 0; i < scale.length; ++i) {
- scale[i] = helper.getTolerance(i, FastMath.abs(y[i]));
- }
- hNew = initializeStep(forward, getOrder(), scale, getStepStart());
- firstTime = false;
- }
- setStepSize(hNew);
- if (forward) {
- if (getStepStart().getTime() + getStepSize() >= finalTime) {
- setStepSize(finalTime - getStepStart().getTime());
- }
- } else {
- if (getStepStart().getTime() + getStepSize() <= finalTime) {
- setStepSize(finalTime - getStepStart().getTime());
- }
- }
- // next stages
- ExplicitRungeKuttaIntegrator.applyInternalButcherWeights(getEquations(), getStepStart().getTime(), y,
- getStepSize(), a, c, yDotK);
- yTmp = ExplicitRungeKuttaIntegrator.applyExternalButcherWeights(y, yDotK, getStepSize(), b);
- incrementEvaluations(stages - 1);
- // estimate the error at the end of the step
- error = estimateError(yDotK, y, yTmp, getStepSize());
- if (Double.isNaN(error)) {
- throw new MathIllegalStateException(LocalizedODEFormats.NAN_APPEARING_DURING_INTEGRATION,
- getStepStart().getTime() + getStepSize());
- }
- if (error >= 1.0) {
- // reject the step and attempt to reduce error by stepsize control
- final double factor =
- FastMath.min(maxGrowth,
- FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
- hNew = getStepSizeHelper().filterStep(getStepSize() * factor, forward, false);
- }
- }
- final double stepEnd = getStepStart().getTime() + getStepSize();
- final double[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp);
- final ODEStateAndDerivative stateTmp = equations.getMapper().mapStateAndDerivative(stepEnd, yTmp, yDotTmp);
- // local error is small enough: accept the step, trigger events and step handlers
- setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()), finalTime));
- if (!isLastStep()) {
- // stepsize control for next step
- final double factor =
- FastMath.min(maxGrowth, FastMath.max(minReduction, safety * FastMath.pow(error, exp)));
- final double scaledH = getStepSize() * factor;
- final double nextT = getStepStart().getTime() + scaledH;
- final boolean nextIsLast = forward ? (nextT >= finalTime) : (nextT <= finalTime);
- hNew = getStepSizeHelper().filterStep(scaledH, forward, nextIsLast);
- final double filteredNextT = getStepStart().getTime() + hNew;
- final boolean filteredNextIsLast = forward ? (filteredNextT >= finalTime) : (filteredNextT <= finalTime);
- if (filteredNextIsLast) {
- hNew = finalTime - getStepStart().getTime();
- }
- }
- } while (!isLastStep());
- final ODEStateAndDerivative finalState = getStepStart();
- resetInternalState();
- return finalState;
- }
- /** Get the minimal reduction factor for stepsize control.
- * @return minimal reduction factor
- */
- public double getMinReduction() {
- return minReduction;
- }
- /** Set the minimal reduction factor for stepsize control.
- * @param minReduction minimal reduction factor
- */
- public void setMinReduction(final double minReduction) {
- this.minReduction = minReduction;
- }
- /** Get the maximal growth factor for stepsize control.
- * @return maximal growth factor
- */
- public double getMaxGrowth() {
- return maxGrowth;
- }
- /** Set the maximal growth factor for stepsize control.
- * @param maxGrowth maximal growth factor
- */
- public void setMaxGrowth(final double maxGrowth) {
- this.maxGrowth = maxGrowth;
- }
- /** Compute the error ratio.
- * @param yDotK derivatives computed during the first stages
- * @param y0 estimate of the step at the start of the step
- * @param y1 estimate of the step at the end of the step
- * @param h current step
- * @return error ratio, greater than 1 if step should be rejected
- */
- protected abstract double estimateError(double[][] yDotK,
- double[] y0, double[] y1,
- double h);
- }