AdaptiveStepsizeIntegrator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.ode.AbstractIntegrator;
- import org.hipparchus.ode.ODEState;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.util.FastMath;
- /**
- * This abstract class holds the common part of all adaptive
- * stepsize integrators for Ordinary Differential Equations.
- *
- * <p>These algorithms perform integration with stepsize control, which
- * means the user does not specify the integration step but rather a
- * tolerance on error. The error threshold is computed as
- * </p>
- * <pre>
- * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
- * </pre>
- * <p>
- * where absTol_i is the absolute tolerance for component i of the
- * state vector and relTol_i is the relative tolerance for the same
- * component. The user can also use only two scalar values absTol and
- * relTol which will be used for all components.
- * </p>
- * <p>
- * If the Ordinary Differential Equations is an {@link org.hipparchus.ode.ExpandableODE
- * extended ODE} rather than a {@link
- * org.hipparchus.ode.OrdinaryDifferentialEquation basic ODE}, then
- * <em>only</em> the {@link org.hipparchus.ode.ExpandableODE#getPrimary() primary part}
- * of the state vector is used for stepsize control, not the complete state vector.
- * </p>
- *
- * <p>If the estimated error for ym+1 is such that</p>
- * <pre>
- * sqrt((sum (errEst_i / threshold_i)^2 ) / n) < 1
- * </pre>
- *
- * <p>(where n is the main set dimension) then the step is accepted,
- * otherwise the step is rejected and a new attempt is made with a new
- * stepsize.</p>
- *
- *
- */
- public abstract class AdaptiveStepsizeIntegrator
- extends AbstractIntegrator {
- /** Helper for step size control. */
- private StepsizeHelper stepsizeHelper;
- /** Build an integrator with the given stepsize bounds.
- * The default step handler does nothing.
- * @param name name of the method
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param scalAbsoluteTolerance allowed absolute error
- * @param scalRelativeTolerance allowed relative error
- */
- protected AdaptiveStepsizeIntegrator(final String name,
- final double minStep, final double maxStep,
- final double scalAbsoluteTolerance,
- final double scalRelativeTolerance) {
- super(name);
- stepsizeHelper = new StepsizeHelper(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
- resetInternalState();
- }
- /** Build an integrator with the given stepsize bounds.
- * The default step handler does nothing.
- * @param name name of the method
- * @param minStep minimal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param maxStep maximal step (sign is irrelevant, regardless of
- * integration direction, forward or backward), the last step can
- * be smaller than this
- * @param vecAbsoluteTolerance allowed absolute error
- * @param vecRelativeTolerance allowed relative error
- */
- protected AdaptiveStepsizeIntegrator(final String name,
- final double minStep, final double maxStep,
- final double[] vecAbsoluteTolerance,
- final double[] vecRelativeTolerance) {
- super(name);
- stepsizeHelper = new StepsizeHelper(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
- resetInternalState();
- }
- /** Set the adaptive step size control parameters.
- * <p>
- * A side effect of this method is to also reset the initial
- * step so it will be automatically computed by the integrator
- * if {@link #setInitialStepSize(double) setInitialStepSize}
- * is not called by the user.
- * </p>
- * @param minimalStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maximalStep maximal step (must be positive even for backward
- * integration)
- * @param absoluteTolerance allowed absolute error
- * @param relativeTolerance allowed relative error
- */
- public void setStepSizeControl(final double minimalStep, final double maximalStep,
- final double absoluteTolerance,
- final double relativeTolerance) {
- stepsizeHelper = new StepsizeHelper(minimalStep, maximalStep, absoluteTolerance, relativeTolerance);
- }
- /** Set the adaptive step size control parameters.
- * <p>
- * A side effect of this method is to also reset the initial
- * step so it will be automatically computed by the integrator
- * if {@link #setInitialStepSize(double) setInitialStepSize}
- * is not called by the user.
- * </p>
- * @param minimalStep minimal step (must be positive even for backward
- * integration), the last step can be smaller than this
- * @param maximalStep maximal step (must be positive even for backward
- * integration)
- * @param absoluteTolerance allowed absolute error
- * @param relativeTolerance allowed relative error
- */
- public void setStepSizeControl(final double minimalStep, final double maximalStep,
- final double[] absoluteTolerance,
- final double[] relativeTolerance) {
- stepsizeHelper = new StepsizeHelper(minimalStep, maximalStep, absoluteTolerance, relativeTolerance);
- }
- /** Get the stepsize helper.
- * @return stepsize helper
- * @since 2.0
- */
- protected StepsizeHelper getStepSizeHelper() {
- return stepsizeHelper;
- }
- /** Set the initial step size.
- * <p>This method allows the user to specify an initial positive
- * step size instead of letting the integrator guess it by
- * itself. If this method is not called before integration is
- * started, the initial step size will be estimated by the
- * integrator.</p>
- * @param initialStepSize initial step size to use (must be positive even
- * for backward integration ; providing a negative value or a value
- * outside of the min/max step interval will lead the integrator to
- * ignore the value and compute the initial step size by itself)
- */
- public void setInitialStepSize(final double initialStepSize) {
- stepsizeHelper.setInitialStepSize(initialStepSize);
- }
- /** {@inheritDoc} */
- @Override
- protected void sanityChecks(final ODEState initialState, final double t)
- throws MathIllegalArgumentException {
- super.sanityChecks(initialState, t);
- stepsizeHelper.setMainSetDimension(initialState.getPrimaryStateDimension());
- }
- /** Initialize the integration step.
- * @param forward forward integration indicator
- * @param order order of the method
- * @param scale scaling vector for the state vector (can be shorter than state vector)
- * @param state0 state at integration start time
- * @return first integration step
- * @exception MathIllegalStateException if the number of functions evaluations is exceeded
- * @exception MathIllegalArgumentException if arrays dimensions do not match equations settings
- */
- public double initializeStep(final boolean forward, final int order, final double[] scale,
- final ODEStateAndDerivative state0)
- throws MathIllegalArgumentException, MathIllegalStateException {
- if (stepsizeHelper.getInitialStep() > 0) {
- // use the user provided value
- return forward ? stepsizeHelper.getInitialStep() : -stepsizeHelper.getInitialStep();
- }
- // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
- // this guess will be used to perform an Euler step
- final double[] y0 = state0.getCompleteState();
- final double[] yDot0 = state0.getCompleteDerivative();
- double yOnScale2 = 0;
- double yDotOnScale2 = 0;
- for (int j = 0; j < scale.length; ++j) {
- final double ratio = y0[j] / scale[j];
- yOnScale2 += ratio * ratio;
- final double ratioDot = yDot0[j] / scale[j];
- yDotOnScale2 += ratioDot * ratioDot;
- }
- double h = ((yOnScale2 < 1.0e-10) || (yDotOnScale2 < 1.0e-10)) ?
- 1.0e-6 : (0.01 * FastMath.sqrt(yOnScale2 / yDotOnScale2));
- if (h > getMaxStep()) {
- h = getMaxStep();
- }
- if (! forward) {
- h = -h;
- }
- // perform an Euler step using the preceding rough guess
- final double[] y1 = new double[y0.length];
- for (int j = 0; j < y0.length; ++j) {
- y1[j] = y0[j] + h * yDot0[j];
- }
- final double[] yDot1 = computeDerivatives(state0.getTime() + h, y1);
- // estimate the second derivative of the solution
- double yDDotOnScale = 0;
- for (int j = 0; j < scale.length; ++j) {
- final double ratioDotDot = (yDot1[j] - yDot0[j]) / scale[j];
- yDDotOnScale += ratioDotDot * ratioDotDot;
- }
- yDDotOnScale = FastMath.sqrt(yDDotOnScale) / h;
- // step size is computed such that
- // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
- final double maxInv2 = FastMath.max(FastMath.sqrt(yDotOnScale2), yDDotOnScale);
- final double h1 = (maxInv2 < 1.0e-15) ?
- FastMath.max(1.0e-6, 0.001 * FastMath.abs(h)) :
- FastMath.pow(0.01 / maxInv2, 1.0 / order);
- h = FastMath.min(100.0 * FastMath.abs(h), h1);
- h = FastMath.max(h, 1.0e-12 * FastMath.abs(state0.getTime())); // avoids cancellation when computing t1 - t0
- if (h < getMinStep()) {
- h = getMinStep();
- }
- if (h > getMaxStep()) {
- h = getMaxStep();
- }
- if (! forward) {
- h = -h;
- }
- return h;
- }
- /** Reset internal state to dummy values. */
- protected void resetInternalState() {
- setStepStart(null);
- setStepSize(stepsizeHelper.getDummyStepsize());
- }
- /** Get the minimal step.
- * @return minimal step
- */
- public double getMinStep() {
- return stepsizeHelper.getMinStep();
- }
- /** Get the maximal step.
- * @return maximal step
- */
- public double getMaxStep() {
- return stepsizeHelper.getMaxStep();
- }
- }