LutherStateInterpolator.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.ode.EquationsMapper;
- import org.hipparchus.ode.ODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.LutherIntegrator;
- import org.hipparchus.util.FastMath;
- /**
- * This class represents an interpolator over the last step during an
- * ODE integration for the 6th order Luther integrator.
- *
- * <p>This interpolator computes dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme.</p>
- *
- * @see LutherIntegrator
- */
- public class LutherStateInterpolator extends RungeKuttaStateInterpolator {
- /** Serializable version identifier */
- private static final long serialVersionUID = 20160328;
- /** Square root. */
- private static final double Q = FastMath.sqrt(21);
- /** Simple constructor.
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public LutherStateInterpolator(final boolean forward,
- final double[][] yDotK,
- final ODEStateAndDerivative globalPreviousState,
- final ODEStateAndDerivative globalCurrentState,
- final ODEStateAndDerivative softPreviousState,
- final ODEStateAndDerivative softCurrentState,
- final EquationsMapper mapper) {
- super(forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper);
- }
- /** {@inheritDoc} */
- @Override
- protected LutherStateInterpolator create(final boolean newForward, final double[][] newYDotK,
- final ODEStateAndDerivative newGlobalPreviousState,
- final ODEStateAndDerivative newGlobalCurrentState,
- final ODEStateAndDerivative newSoftPreviousState,
- final ODEStateAndDerivative newSoftCurrentState,
- final EquationsMapper newMapper) {
- return new LutherStateInterpolator(newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** {@inheritDoc} */
- @Override
- protected ODEStateAndDerivative computeInterpolatedStateAndDerivatives(final EquationsMapper mapper,
- final double time, final double theta,
- final double thetaH, final double oneMinusThetaH) {
- // the coefficients below have been computed by solving the
- // order conditions from a theorem from Butcher (1963), using
- // the method explained in Folkmar Bornemann paper "Runge-Kutta
- // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
- // University of Technology, February 9, 2001
- //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
- // the method is implemented in the rkcheck tool
- // <https://www.spaceroots.org/software/rkcheck/index.html>.
- // Running it for order 5 gives the following order conditions
- // for an interpolator:
- // order 1 conditions
- // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
- // order 2 conditions
- // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
- // order 3 conditions
- // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
- // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
- // order 4 conditions
- // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
- // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
- // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
- // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
- // order 5 conditions
- // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
- // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
- // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
- // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
- // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
- // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
- // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
- // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
- // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
- // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
- // are the b_i for the interpolator. They are found by solving the above equations.
- // For a given interpolator, some equations are redundant, so in our case when we select
- // all equations from order 1 to 4, we still don't have enough independent equations
- // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
- // we selected the last equation. It appears this choice implied at least the last 3 equations
- // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
- // At the end, we get the b_i as polynomials in theta.
- final double[] interpolatedState;
- final double[] interpolatedDerivatives;
- final double coeffDot1 = 1 + theta * ( -54 / 5.0 + theta * ( 36 + theta * ( -47 + theta * 21)));
- final double coeffDot2 = 0;
- final double coeffDot3 = theta * (-208 / 15.0 + theta * ( 320 / 3.0 + theta * (-608 / 3.0 + theta * 112)));
- final double coeffDot4 = theta * ( 324 / 25.0 + theta * ( -486 / 5.0 + theta * ( 972 / 5.0 + theta * -567 / 5.0)));
- final double coeffDot5 = theta * ((833 + 343 * Q) / 150.0 + theta * ((-637 - 357 * Q) / 30.0 + theta * ((392 + 287 * Q) / 15.0 + theta * (-49 - 49 * Q) / 5.0)));
- final double coeffDot6 = theta * ((833 - 343 * Q) / 150.0 + theta * ((-637 + 357 * Q) / 30.0 + theta * ((392 - 287 * Q) / 15.0 + theta * (-49 + 49 * Q) / 5.0)));
- final double coeffDot7 = theta * ( 3 / 5.0 + theta * ( -3 + theta * 3));
- if (getGlobalPreviousState() != null && theta <= 0.5) {
- final double coeff1 = 1 + theta * ( -27 / 5.0 + theta * ( 12 + theta * ( -47 / 4.0 + theta * 21 / 5.0)));
- final double coeff2 = 0;
- final double coeff3 = theta * (-104 / 15.0 + theta * ( 320 / 9.0 + theta * (-152 / 3.0 + theta * 112 / 5.0)));
- final double coeff4 = theta * ( 162 / 25.0 + theta * ( -162 / 5.0 + theta * ( 243 / 5.0 + theta * -567 / 25.0)));
- final double coeff5 = theta * ((833 + 343 * Q) / 300.0 + theta * ((-637 - 357 * Q) / 90.0 + theta * ((392 + 287 * Q) / 60.0 + theta * (-49 - 49 * Q) / 25.0)));
- final double coeff6 = theta * ((833 - 343 * Q) / 300.0 + theta * ((-637 + 357 * Q) / 90.0 + theta * ((392 - 287 * Q) / 60.0 + theta * (-49 + 49 * Q) / 25.0)));
- final double coeff7 = theta * ( 3 / 10.0 + theta * ( -1 + theta * ( 3 / 4.0)));
- interpolatedState = previousStateLinearCombination(thetaH * coeff1, thetaH * coeff2,
- thetaH * coeff3, thetaH * coeff4,
- thetaH * coeff5, thetaH * coeff6,
- thetaH * coeff7);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
- } else {
- final double coeff1 = -1 / 20.0 + theta * ( 19 / 20.0 + theta * ( -89 / 20.0 + theta * ( 151 / 20.0 + theta * -21 / 5.0)));
- final double coeff2 = 0;
- final double coeff3 = -16 / 45.0 + theta * ( -16 / 45.0 + theta * ( -328 / 45.0 + theta * ( 424 / 15.0 + theta * -112 / 5.0)));
- final double coeff4 = theta * ( theta * ( 162 / 25.0 + theta * ( -648 / 25.0 + theta * 567 / 25.0)));
- final double coeff5 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 + 1029 * Q) / 900.0 + theta * ((-1372 - 847 * Q) / 300.0 + theta * ( 49 + 49 * Q) / 25.0)));
- final double coeff6 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 - 1029 * Q) / 900.0 + theta * ((-1372 + 847 * Q) / 300.0 + theta * ( 49 - 49 * Q) / 25.0)));
- final double coeff7 = -1 / 20.0 + theta * ( -1 / 20.0 + theta * ( 1 / 4.0 + theta * ( -3 / 4.0)));
- interpolatedState = currentStateLinearCombination(oneMinusThetaH * coeff1, oneMinusThetaH * coeff2,
- oneMinusThetaH * coeff3, oneMinusThetaH * coeff4,
- oneMinusThetaH * coeff5, oneMinusThetaH * coeff6,
- oneMinusThetaH * coeff7);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot1, coeffDot2, coeffDot3, coeffDot4, coeffDot5, coeffDot6, coeffDot7);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }