EulerFieldStateInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.EulerFieldIntegrator;
- /**
- * This class implements a linear interpolator for step.
- *
- * <p>This interpolator computes dense output inside the last
- * step computed. The interpolation equation is consistent with the
- * integration scheme :</p>
- * <ul>
- * <li>Using reference point at step start:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub>) + θ h y'
- * </li>
- * <li>Using reference point at step end:<br>
- * y(t<sub>n</sub> + θ h) = y (t<sub>n</sub> + h) - (1-θ) h y'
- * </li>
- * </ul>
- *
- * <p>where θ belongs to [0 ; 1] and where y' is the evaluation of
- * the derivatives already computed during the step.</p>
- *
- * @see EulerFieldIntegrator
- * @param <T> the type of the field elements
- */
- public class EulerFieldStateInterpolator<T extends CalculusFieldElement<T>>
- extends RungeKuttaFieldStateInterpolator<T> {
- /** Simple constructor.
- * @param field field to which the time and state vector elements belong
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public EulerFieldStateInterpolator(final Field<T> field, final boolean forward,
- final T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldODEStateAndDerivative<T> softPreviousState,
- final FieldODEStateAndDerivative<T> softCurrentState,
- final FieldEquationsMapper<T> mapper) {
- super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
- mapper);
- }
- /** {@inheritDoc} */
- @Override
- protected EulerFieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
- final FieldODEStateAndDerivative<T> newGlobalPreviousState,
- final FieldODEStateAndDerivative<T> newGlobalCurrentState,
- final FieldODEStateAndDerivative<T> newSoftPreviousState,
- final FieldODEStateAndDerivative<T> newSoftCurrentState,
- final FieldEquationsMapper<T> newMapper) {
- return new EulerFieldStateInterpolator<>(newField, newForward, newYDotK, newGlobalPreviousState,
- newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper);
- }
- /** {@inheritDoc} */
- @SuppressWarnings("unchecked")
- @Override
- protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
- final T time, final T theta,
- final T thetaH, final T oneMinusThetaH) {
- final T[] interpolatedState;
- if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
- interpolatedState = previousStateLinearCombination(thetaH);
- } else {
- interpolatedState = currentStateLinearCombination(oneMinusThetaH.negate());
- }
- final T[] interpolatedDerivatives = derivativeLinearCombination(time.getField().getOne());
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }