DormandPrince853FieldStateInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.exception.MathIllegalStateException;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.DormandPrince853FieldIntegrator;
- import org.hipparchus.util.MathArrays;
- /**
- * This class represents an interpolator over the last step during an
- * ODE integration for the 8(5,3) Dormand-Prince integrator.
- *
- * @see DormandPrince853FieldIntegrator
- *
- * @param <T> the type of the field elements
- */
- public class DormandPrince853FieldStateInterpolator<T extends CalculusFieldElement<T>>
- extends RungeKuttaFieldStateInterpolator<T> {
- /** Interpolation weights.
- * (beware that only the non-null values are in the table)
- */
- private final T[][] d;
- /** Simple constructor.
- * @param field field to which the time and state vector elements belong
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public DormandPrince853FieldStateInterpolator(final Field<T> field, final boolean forward,
- final T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldODEStateAndDerivative<T> softPreviousState,
- final FieldODEStateAndDerivative<T> softCurrentState,
- final FieldEquationsMapper<T> mapper) {
- super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
- mapper);
- // interpolation weights
- d = MathArrays.buildArray(field, 7, 16);
- // this row is the same as the b array
- d[0][ 0] = fraction(field, 104257, 1920240);
- d[0][ 1] = field.getZero();
- d[0][ 2] = field.getZero();
- d[0][ 3] = field.getZero();
- d[0][ 4] = field.getZero();
- d[0][ 5] = fraction(field, 3399327.0, 763840.0);
- d[0][ 6] = fraction(field, 66578432.0, 35198415.0);
- d[0][ 7] = fraction(field, -1674902723.0, 288716400.0);
- d[0][ 8] = fraction(field, 54980371265625.0, 176692375811392.0);
- d[0][ 9] = fraction(field, -734375.0, 4826304.0);
- d[0][10] = fraction(field, 171414593.0, 851261400.0);
- d[0][11] = fraction(field, 137909.0, 3084480.0);
- d[0][12] = field.getZero();
- d[0][13] = field.getZero();
- d[0][14] = field.getZero();
- d[0][15] = field.getZero();
- d[1][ 0] = d[0][ 0].negate().add(1);
- d[1][ 1] = d[0][ 1].negate();
- d[1][ 2] = d[0][ 2].negate();
- d[1][ 3] = d[0][ 3].negate();
- d[1][ 4] = d[0][ 4].negate();
- d[1][ 5] = d[0][ 5].negate();
- d[1][ 6] = d[0][ 6].negate();
- d[1][ 7] = d[0][ 7].negate();
- d[1][ 8] = d[0][ 8].negate();
- d[1][ 9] = d[0][ 9].negate();
- d[1][10] = d[0][10].negate();
- d[1][11] = d[0][11].negate();
- d[1][12] = d[0][12].negate(); // really 0
- d[1][13] = d[0][13].negate(); // really 0
- d[1][14] = d[0][14].negate(); // really 0
- d[1][15] = d[0][15].negate(); // really 0
- d[2][ 0] = d[0][ 0].multiply(2).subtract(1);
- d[2][ 1] = d[0][ 1].multiply(2);
- d[2][ 2] = d[0][ 2].multiply(2);
- d[2][ 3] = d[0][ 3].multiply(2);
- d[2][ 4] = d[0][ 4].multiply(2);
- d[2][ 5] = d[0][ 5].multiply(2);
- d[2][ 6] = d[0][ 6].multiply(2);
- d[2][ 7] = d[0][ 7].multiply(2);
- d[2][ 8] = d[0][ 8].multiply(2);
- d[2][ 9] = d[0][ 9].multiply(2);
- d[2][10] = d[0][10].multiply(2);
- d[2][11] = d[0][11].multiply(2);
- d[2][12] = d[0][12].multiply(2).subtract(1); // really -1
- d[2][13] = d[0][13].multiply(2); // really 0
- d[2][14] = d[0][14].multiply(2); // really 0
- d[2][15] = d[0][15].multiply(2); // really 0
- d[3][ 0] = fraction(field, -17751989329.0, 2106076560.0);
- d[3][ 1] = field.getZero();
- d[3][ 2] = field.getZero();
- d[3][ 3] = field.getZero();
- d[3][ 4] = field.getZero();
- d[3][ 5] = fraction(field, 4272954039.0, 7539864640.0);
- d[3][ 6] = fraction(field, -118476319744.0, 38604839385.0);
- d[3][ 7] = fraction(field, 755123450731.0, 316657731600.0);
- d[3][ 8] = fraction(field, 3692384461234828125.0, 1744130441634250432.0);
- d[3][ 9] = fraction(field, -4612609375.0, 5293382976.0);
- d[3][10] = fraction(field, 2091772278379.0, 933644586600.0);
- d[3][11] = fraction(field, 2136624137.0, 3382989120.0);
- d[3][12] = fraction(field, -126493.0, 1421424.0);
- d[3][13] = fraction(field, 98350000.0, 5419179.0);
- d[3][14] = fraction(field, -18878125.0, 2053168.0);
- d[3][15] = fraction(field, -1944542619.0, 438351368.0);
- d[4][ 0] = fraction(field, 32941697297.0, 3159114840.0);
- d[4][ 1] = field.getZero();
- d[4][ 2] = field.getZero();
- d[4][ 3] = field.getZero();
- d[4][ 4] = field.getZero();
- d[4][ 5] = fraction(field, 456696183123.0, 1884966160.0);
- d[4][ 6] = fraction(field, 19132610714624.0, 115814518155.0);
- d[4][ 7] = fraction(field, -177904688592943.0, 474986597400.0);
- d[4][ 8] = fraction(field, -4821139941836765625.0, 218016305204281304.0);
- d[4][ 9] = fraction(field, 30702015625.0, 3970037232.0);
- d[4][10] = fraction(field, -85916079474274.0, 2800933759800.0);
- d[4][11] = fraction(field, -5919468007.0, 634310460.0);
- d[4][12] = fraction(field, 2479159.0, 157936.0);
- d[4][13] = fraction(field, -18750000.0, 602131.0);
- d[4][14] = fraction(field, -19203125.0, 2053168.0);
- d[4][15] = fraction(field, 15700361463.0, 438351368.0);
- d[5][ 0] = fraction(field, 12627015655.0, 631822968.0);
- d[5][ 1] = field.getZero();
- d[5][ 2] = field.getZero();
- d[5][ 3] = field.getZero();
- d[5][ 4] = field.getZero();
- d[5][ 5] = fraction(field, -72955222965.0, 188496616.0);
- d[5][ 6] = fraction(field, -13145744952320.0, 69488710893.0);
- d[5][ 7] = fraction(field, 30084216194513.0, 56998391688.0);
- d[5][ 8] = fraction(field, -296858761006640625.0, 25648977082856624.0);
- d[5][ 9] = fraction(field, 569140625.0, 82709109.0);
- d[5][10] = fraction(field, -18684190637.0, 18672891732.0);
- d[5][11] = fraction(field, 69644045.0, 89549712.0);
- d[5][12] = fraction(field, -11847025.0, 4264272.0);
- d[5][13] = fraction(field, -978650000.0, 16257537.0);
- d[5][14] = fraction(field, 519371875.0, 6159504.0);
- d[5][15] = fraction(field, 5256837225.0, 438351368.0);
- d[6][ 0] = fraction(field, -450944925.0, 17550638.0);
- d[6][ 1] = field.getZero();
- d[6][ 2] = field.getZero();
- d[6][ 3] = field.getZero();
- d[6][ 4] = field.getZero();
- d[6][ 5] = fraction(field, -14532122925.0, 94248308.0);
- d[6][ 6] = fraction(field, -595876966400.0, 2573655959.0);
- d[6][ 7] = fraction(field, 188748653015.0, 527762886.0);
- d[6][ 8] = fraction(field, 2545485458115234375.0, 27252038150535163.0);
- d[6][ 9] = fraction(field, -1376953125.0, 36759604.0);
- d[6][10] = fraction(field, 53995596795.0, 518691437.0);
- d[6][11] = fraction(field, 210311225.0, 7047894.0);
- d[6][12] = fraction(field, -1718875.0, 39484.0);
- d[6][13] = fraction(field, 58000000.0, 602131.0);
- d[6][14] = fraction(field, -1546875.0, 39484.0);
- d[6][15] = fraction(field, -1262172375.0, 8429834.0);
- }
- /** {@inheritDoc} */
- @Override
- protected DormandPrince853FieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
- final FieldODEStateAndDerivative<T> newGlobalPreviousState,
- final FieldODEStateAndDerivative<T> newGlobalCurrentState,
- final FieldODEStateAndDerivative<T> newSoftPreviousState,
- final FieldODEStateAndDerivative<T> newSoftCurrentState,
- final FieldEquationsMapper<T> newMapper) {
- return new DormandPrince853FieldStateInterpolator<>(newField, newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** Create a fraction.
- * @param field field to which the elements belong
- * @param p numerator
- * @param q denominator
- * @return p/q computed in the instance field
- */
- private T fraction(final Field<T> field, final double p, final double q) {
- return field.getZero().add(p).divide(q);
- }
- /** {@inheritDoc} */
- @SuppressWarnings("unchecked")
- @Override
- protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
- final T time, final T theta,
- final T thetaH, final T oneMinusThetaH)
- throws MathIllegalStateException {
- final T one = time.getField().getOne();
- final T eta = one.subtract(theta);
- final T twoTheta = theta.multiply(2);
- final T theta2 = theta.multiply(theta);
- final T dot1 = one.subtract(twoTheta);
- final T dot2 = theta.multiply(theta.multiply(-3).add(2));
- final T dot3 = twoTheta.multiply(theta.multiply(twoTheta.subtract(3)).add(1));
- final T dot4 = theta2.multiply(theta.multiply(theta.multiply(5).subtract(8)).add(3));
- final T dot5 = theta2.multiply(theta.multiply(theta.multiply(theta.multiply(-6).add(15)).subtract(12)).add(3));
- final T dot6 = theta2.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-7).add(18)).subtract(15)).add(4)));
- final T[] interpolatedState;
- final T[] interpolatedDerivatives;
- if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
- final T f0 = thetaH;
- final T f1 = f0.multiply(eta);
- final T f2 = f1.multiply(theta);
- final T f3 = f2.multiply(eta);
- final T f4 = f3.multiply(theta);
- final T f5 = f4.multiply(eta);
- final T f6 = f5.multiply(theta);
- final T[] p = MathArrays.buildArray(time.getField(), 16);
- final T[] q = MathArrays.buildArray(time.getField(), 16);
- for (int i = 0; i < p.length; ++i) {
- p[i] = f0.multiply(d[0][i]).
- add(f1.multiply(d[1][i])).
- add(f2.multiply(d[2][i])).
- add(f3.multiply(d[3][i])).
- add(f4.multiply(d[4][i])).
- add(f5.multiply(d[5][i])).
- add(f6.multiply(d[6][i]));
- q[i] = d[0][i].
- add(dot1.multiply(d[1][i])).
- add(dot2.multiply(d[2][i])).
- add(dot3.multiply(d[3][i])).
- add(dot4.multiply(d[4][i])).
- add(dot5.multiply(d[5][i])).
- add(dot6.multiply(d[6][i]));
- }
- interpolatedState = previousStateLinearCombination(p[0], p[1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7],
- p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
- interpolatedDerivatives = derivativeLinearCombination(q[0], q[1], q[ 2], q[ 3], q[ 4], q[ 5], q[ 6], q[ 7],
- q[8], q[9], q[10], q[11], q[12], q[13], q[14], q[15]);
- } else {
- final T f0 = oneMinusThetaH.negate();
- final T f1 = f0.multiply(theta).negate();
- final T f2 = f1.multiply(theta);
- final T f3 = f2.multiply(eta);
- final T f4 = f3.multiply(theta);
- final T f5 = f4.multiply(eta);
- final T f6 = f5.multiply(theta);
- final T[] p = MathArrays.buildArray(time.getField(), 16);
- final T[] q = MathArrays.buildArray(time.getField(), 16);
- for (int i = 0; i < p.length; ++i) {
- p[i] = f0.multiply(d[0][i]).
- add(f1.multiply(d[1][i])).
- add(f2.multiply(d[2][i])).
- add(f3.multiply(d[3][i])).
- add(f4.multiply(d[4][i])).
- add(f5.multiply(d[5][i])).
- add(f6.multiply(d[6][i]));
- q[i] = d[0][i].
- add(dot1.multiply(d[1][i])).
- add(dot2.multiply(d[2][i])).
- add(dot3.multiply(d[3][i])).
- add(dot4.multiply(d[4][i])).
- add(dot5.multiply(d[5][i])).
- add(dot6.multiply(d[6][i]));
- }
- interpolatedState = currentStateLinearCombination(p[0], p[1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7],
- p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
- interpolatedDerivatives = derivativeLinearCombination(q[0], q[1], q[ 2], q[ 3], q[ 4], q[ 5], q[ 6], q[ 7],
- q[8], q[9], q[10], q[11], q[12], q[13], q[14], q[15]);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }