DormandPrince54FieldStateInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.ode.nonstiff.interpolators;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.ode.FieldEquationsMapper;
- import org.hipparchus.ode.FieldODEStateAndDerivative;
- import org.hipparchus.ode.nonstiff.DormandPrince54Integrator;
- /**
- * This class represents an interpolator over the last step during an
- * ODE integration for the 5(4) Dormand-Prince integrator.
- *
- * @see DormandPrince54Integrator
- *
- * @param <T> the type of the field elements
- */
- public class DormandPrince54FieldStateInterpolator<T extends CalculusFieldElement<T>>
- extends RungeKuttaFieldStateInterpolator<T> {
- /** Last row of the Butcher-array internal weights, element 0. */
- private final T a70;
- // element 1 is zero, so it is neither stored nor used
- /** Last row of the Butcher-array internal weights, element 2. */
- private final T a72;
- /** Last row of the Butcher-array internal weights, element 3. */
- private final T a73;
- /** Last row of the Butcher-array internal weights, element 4. */
- private final T a74;
- /** Last row of the Butcher-array internal weights, element 5. */
- private final T a75;
- /** Shampine (1986) Dense output, element 0. */
- private final T d0;
- // element 1 is zero, so it is neither stored nor used
- /** Shampine (1986) Dense output, element 2. */
- private final T d2;
- /** Shampine (1986) Dense output, element 3. */
- private final T d3;
- /** Shampine (1986) Dense output, element 4. */
- private final T d4;
- /** Shampine (1986) Dense output, element 5. */
- private final T d5;
- /** Shampine (1986) Dense output, element 6. */
- private final T d6;
- /** Simple constructor.
- * @param field field to which the time and state vector elements belong
- * @param forward integration direction indicator
- * @param yDotK slopes at the intermediate points
- * @param globalPreviousState start of the global step
- * @param globalCurrentState end of the global step
- * @param softPreviousState start of the restricted step
- * @param softCurrentState end of the restricted step
- * @param mapper equations mapper for the all equations
- */
- public DormandPrince54FieldStateInterpolator(final Field<T> field, final boolean forward,
- final T[][] yDotK,
- final FieldODEStateAndDerivative<T> globalPreviousState,
- final FieldODEStateAndDerivative<T> globalCurrentState,
- final FieldODEStateAndDerivative<T> softPreviousState,
- final FieldODEStateAndDerivative<T> softCurrentState,
- final FieldEquationsMapper<T> mapper) {
- super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState,
- mapper);
- final T one = field.getOne();
- a70 = one.newInstance( 35.0 / 384.0);
- a72 = one.newInstance( 500.0 / 1113.0);
- a73 = one.newInstance( 125.0 / 192.0);
- a74 = one.newInstance(-2187.0 / 6784.0);
- a75 = one.newInstance( 11.0 / 84.0);
- d0 = one.newInstance(-12715105075.0 / 11282082432.0);
- d2 = one.newInstance( 87487479700.0 / 32700410799.0);
- d3 = one.newInstance(-10690763975.0 / 1880347072.0);
- d4 = one.newInstance(701980252875.0 / 199316789632.0);
- d5 = one.newInstance( -1453857185.0 / 822651844.0);
- d6 = one.newInstance( 69997945.0 / 29380423.0);
- }
- /** {@inheritDoc} */
- @Override
- protected DormandPrince54FieldStateInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK,
- final FieldODEStateAndDerivative<T> newGlobalPreviousState,
- final FieldODEStateAndDerivative<T> newGlobalCurrentState,
- final FieldODEStateAndDerivative<T> newSoftPreviousState,
- final FieldODEStateAndDerivative<T> newSoftCurrentState,
- final FieldEquationsMapper<T> newMapper) {
- return new DormandPrince54FieldStateInterpolator<>(newField, newForward, newYDotK,
- newGlobalPreviousState, newGlobalCurrentState,
- newSoftPreviousState, newSoftCurrentState,
- newMapper);
- }
- /** {@inheritDoc} */
- @SuppressWarnings("unchecked")
- @Override
- protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
- final T time, final T theta,
- final T thetaH, final T oneMinusThetaH) {
- // interpolate
- final T one = time.getField().getOne();
- final T eta = one.subtract(theta);
- final T twoTheta = theta.multiply(2);
- final T dot2 = one.subtract(twoTheta);
- final T dot3 = theta.multiply(theta.multiply(-3).add(2));
- final T dot4 = twoTheta.multiply(theta.multiply(twoTheta.subtract(3)).add(1));
- final T[] interpolatedState;
- final T[] interpolatedDerivatives;
- if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) {
- final T f1 = thetaH;
- final T f2 = f1.multiply(eta);
- final T f3 = f2.multiply(theta);
- final T f4 = f3.multiply(eta);
- final T coeff0 = f1.multiply(a70).
- subtract(f2.multiply(a70.subtract(1))).
- add(f3.multiply(a70.multiply(2).subtract(1))).
- add(f4.multiply(d0));
- final T coeff1 = time.getField().getZero();
- final T coeff2 = f1.multiply(a72).
- subtract(f2.multiply(a72)).
- add(f3.multiply(a72.multiply(2))).
- add(f4.multiply(d2));
- final T coeff3 = f1.multiply(a73).
- subtract(f2.multiply(a73)).
- add(f3.multiply(a73.multiply(2))).
- add(f4.multiply(d3));
- final T coeff4 = f1.multiply(a74).
- subtract(f2.multiply(a74)).
- add(f3.multiply(a74.multiply(2))).
- add(f4.multiply(d4));
- final T coeff5 = f1.multiply(a75).
- subtract(f2.multiply(a75)).
- add(f3.multiply(a75.multiply(2))).
- add(f4.multiply(d5));
- final T coeff6 = f4.multiply(d6).subtract(f3);
- final T coeffDot0 = a70.
- subtract(dot2.multiply(a70.subtract(1))).
- add(dot3.multiply(a70.multiply(2).subtract(1))).
- add(dot4.multiply(d0));
- final T coeffDot1 = time.getField().getZero();
- final T coeffDot2 = a72.
- subtract(dot2.multiply(a72)).
- add(dot3.multiply(a72.multiply(2))).
- add(dot4.multiply(d2));
- final T coeffDot3 = a73.
- subtract(dot2.multiply(a73)).
- add(dot3.multiply(a73.multiply(2))).
- add(dot4.multiply(d3));
- final T coeffDot4 = a74.
- subtract(dot2.multiply(a74)).
- add(dot3.multiply(a74.multiply(2))).
- add(dot4.multiply(d4));
- final T coeffDot5 = a75.
- subtract(dot2.multiply(a75)).
- add(dot3.multiply(a75.multiply(2))).
- add(dot4.multiply(d5));
- final T coeffDot6 = dot4.multiply(d6).subtract(dot3);
- interpolatedState = previousStateLinearCombination(coeff0, coeff1, coeff2, coeff3,
- coeff4, coeff5, coeff6);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3,
- coeffDot4, coeffDot5, coeffDot6);
- } else {
- final T f1 = oneMinusThetaH.negate();
- final T f2 = oneMinusThetaH.multiply(theta);
- final T f3 = f2.multiply(theta);
- final T f4 = f3.multiply(eta);
- final T coeff0 = f1.multiply(a70).
- subtract(f2.multiply(a70.subtract(1))).
- add(f3.multiply(a70.multiply(2).subtract(1))).
- add(f4.multiply(d0));
- final T coeff1 = time.getField().getZero();
- final T coeff2 = f1.multiply(a72).
- subtract(f2.multiply(a72)).
- add(f3.multiply(a72.multiply(2))).
- add(f4.multiply(d2));
- final T coeff3 = f1.multiply(a73).
- subtract(f2.multiply(a73)).
- add(f3.multiply(a73.multiply(2))).
- add(f4.multiply(d3));
- final T coeff4 = f1.multiply(a74).
- subtract(f2.multiply(a74)).
- add(f3.multiply(a74.multiply(2))).
- add(f4.multiply(d4));
- final T coeff5 = f1.multiply(a75).
- subtract(f2.multiply(a75)).
- add(f3.multiply(a75.multiply(2))).
- add(f4.multiply(d5));
- final T coeff6 = f4.multiply(d6).subtract(f3);
- final T coeffDot0 = a70.
- subtract(dot2.multiply(a70.subtract(1))).
- add(dot3.multiply(a70.multiply(2).subtract(1))).
- add(dot4.multiply(d0));
- final T coeffDot1 = time.getField().getZero();
- final T coeffDot2 = a72.
- subtract(dot2.multiply(a72)).
- add(dot3.multiply(a72.multiply(2))).
- add(dot4.multiply(d2));
- final T coeffDot3 = a73.
- subtract(dot2.multiply(a73)).
- add(dot3.multiply(a73.multiply(2))).
- add(dot4.multiply(d3));
- final T coeffDot4 = a74.
- subtract(dot2.multiply(a74)).
- add(dot3.multiply(a74.multiply(2))).
- add(dot4.multiply(d4));
- final T coeffDot5 = a75.
- subtract(dot2.multiply(a75)).
- add(dot3.multiply(a75.multiply(2))).
- add(dot4.multiply(d5));
- final T coeffDot6 = dot4.multiply(d6).subtract(dot3);
- interpolatedState = currentStateLinearCombination(coeff0, coeff1, coeff2, coeff3,
- coeff4, coeff5, coeff6);
- interpolatedDerivatives = derivativeLinearCombination(coeffDot0, coeffDot1, coeffDot2, coeffDot3,
- coeffDot4, coeffDot5, coeffDot6);
- }
- return mapper.mapStateAndDerivative(time, interpolatedState, interpolatedDerivatives);
- }
- }