EventSlopeFilter.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.ode.events;
import java.util.Arrays;
import org.hipparchus.analysis.UnivariateFunction;
import org.hipparchus.analysis.solvers.BracketedUnivariateSolver;
import org.hipparchus.ode.ODEState;
import org.hipparchus.ode.ODEStateAndDerivative;
/** Wrapper used to detect only increasing or decreasing events.
*
* <p>General {@link ODEEventDetector events} are defined implicitly
* by a {@link ODEEventDetector#g(ODEStateAndDerivative) g function} crossing
* zero. This function needs to be continuous in the event neighborhood,
* and its sign must remain consistent between events. This implies that
* during an ODE integration, events triggered are alternately events
* for which the function increases from negative to positive values,
* and events for which the function decreases from positive to
* negative values.
* </p>
*
* <p>Sometimes, users are only interested in one type of event (say
* increasing events for example) and not in the other type. In these
* cases, looking precisely for all events location and triggering
* events that will later be ignored is a waste of computing time.</p>
*
* <p>Users can wrap a regular {@link ODEEventDetector event detector} in
* an instance of this class and provide this wrapping instance to
* the {@link org.hipparchus.ode.ODEIntegrator ODE solver}
* in order to avoid wasting time looking for uninteresting events.
* The wrapper will intercept the calls to the {@link
* ODEEventDetector#g(ODEStateAndDerivative) g function} and to the {@link
* ODEEventHandler#eventOccurred(ODEStateAndDerivative, ODEEventDetector, boolean)
* eventOccurred} method in order to ignore uninteresting events. The
* wrapped regular {@link ODEEventHandler event handler} will the see only
* the interesting events, i.e. either only {@code increasing} events or
* {@code decreasing} events. the number of calls to the {@link
* ODEEventDetector#g(ODEStateAndDerivative) g function} will also be reduced.</p>
* @param <T> type of the event detector
* @since 3.0
*/
public class EventSlopeFilter<T extends ODEEventDetector> extends AbstractODEDetector<EventSlopeFilter<T>> {
/** Number of past transformers updates stored. */
private static final int HISTORY_SIZE = 100;
/** Wrapped event detector.
* @since 3.0
*/
private final T rawDetector;
/** Filter to use. */
private final FilterType filter;
/** Transformers of the g function. */
private final Transformer[] transformers;
/** Update time of the transformers. */
private final double[] updates;
/** Indicator for forward integration. */
private boolean forward;
/** Extreme time encountered so far. */
private double extremeT;
/** Wrap an {@link ODEEventDetector event detector}.
* @param rawDetector event detector to wrap
* @param filter filter to use
* @since 3.0
*/
public EventSlopeFilter(final T rawDetector, final FilterType filter) {
this(rawDetector.getMaxCheckInterval(), rawDetector.getMaxIterationCount(),
rawDetector.getSolver(), new LocalHandler<>(rawDetector.getHandler()),
rawDetector, filter);
}
/** Private constructor with full parameters.
* <p>
* This constructor is private as users are expected to use the builder
* API with the various {@code withXxx()} methods to set up the instance
* in a readable manner without using a huge amount of parameters.
* </p>
* @param maxCheck maximum checking interval (s)
* @param maxIter maximum number of iterations in the event time search
* @param solver root-finding algorithm to use to detect state events
* @param handler event handler to call at event occurrences
* @param rawDetector event detector to wrap
* @param filter filter to use
*/
private EventSlopeFilter(final AdaptableInterval maxCheck, final int maxIter,
final BracketedUnivariateSolver<UnivariateFunction> solver,
final ODEEventHandler handler,
final T rawDetector, final FilterType filter) {
super(maxCheck, maxIter, solver, handler);
this.rawDetector = rawDetector;
this.filter = filter;
this.transformers = new Transformer[HISTORY_SIZE];
this.updates = new double[HISTORY_SIZE];
}
/** {@inheritDoc} */
@Override
protected EventSlopeFilter<T> create(final AdaptableInterval newMaxCheck, final int newMaxIter,
final BracketedUnivariateSolver<UnivariateFunction> newSolver,
final ODEEventHandler newHandler) {
return new EventSlopeFilter<>(newMaxCheck, newMaxIter, newSolver, newHandler,
rawDetector, filter);
}
/**
* Get the wrapped raw detector.
* @return the wrapped raw detector
*/
public T getDetector() {
return rawDetector;
}
/** {@inheritDoc} */
@Override
public void init(final ODEStateAndDerivative initialState, double finalTime) {
// delegate to raw handler
rawDetector.init(initialState, finalTime);
// initialize events triggering logic
forward = finalTime >= initialState.getTime();
extremeT = forward ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
Arrays.fill(transformers, Transformer.UNINITIALIZED);
Arrays.fill(updates, extremeT);
}
/** {@inheritDoc} */
@Override
public double g(final ODEStateAndDerivative state) {
final double rawG = rawDetector.g(state);
// search which transformer should be applied to g
if (forward) {
final int last = transformers.length - 1;
if (extremeT < state.getTime()) {
// we are at the forward end of the history
// check if a new rough root has been crossed
final Transformer previous = transformers[last];
final Transformer next = filter.selectTransformer(previous, rawG, forward);
if (next != previous) {
// there is a root somewhere between extremeT and t.
// the new transformer is valid for t (this is how we have just computed
// it above), but it is in fact valid on both sides of the root, so
// it was already valid before t and even up to previous time. We store
// the switch at extremeT for safety, to ensure the previous transformer
// is not applied too close of the root
System.arraycopy(updates, 1, updates, 0, last);
System.arraycopy(transformers, 1, transformers, 0, last);
updates[last] = extremeT;
transformers[last] = next;
}
extremeT = state.getTime();
// apply the transform
return next.transformed(rawG);
} else {
// we are in the middle of the history
// select the transformer
for (int i = last; i > 0; --i) {
if (updates[i] <= state.getTime()) {
// apply the transform
return transformers[i].transformed(rawG);
}
}
return transformers[0].transformed(rawG);
}
} else {
if (state.getTime() < extremeT) {
// we are at the backward end of the history
// check if a new rough root has been crossed
final Transformer previous = transformers[0];
final Transformer next = filter.selectTransformer(previous, rawG, forward);
if (next != previous) {
// there is a root somewhere between extremeT and t.
// the new transformer is valid for t (this is how we have just computed
// it above), but it is in fact valid on both sides of the root, so
// it was already valid before t and even up to previous time. We store
// the switch at extremeT for safety, to ensure the previous transformer
// is not applied too close of the root
System.arraycopy(updates, 0, updates, 1, updates.length - 1);
System.arraycopy(transformers, 0, transformers, 1, transformers.length - 1);
updates[0] = extremeT;
transformers[0] = next;
}
extremeT = state.getTime();
// apply the transform
return next.transformed(rawG);
} else {
// we are in the middle of the history
// select the transformer
for (int i = 0; i < updates.length - 1; ++i) {
if (state.getTime() <= updates[i]) {
// apply the transform
return transformers[i].transformed(rawG);
}
}
return transformers[updates.length - 1].transformed(rawG);
}
}
}
/** Local handler.
* @param <T> type of the event detector
*/
private static class LocalHandler<T extends ODEEventDetector> implements ODEEventHandler {
/** Raw handler. */
private final ODEEventHandler rawHandler;
/** Simple constructor.
* @param rawHandler raw handler
*/
LocalHandler(final ODEEventHandler rawHandler) {
this.rawHandler = rawHandler;
}
/** {@inheritDoc} */
@Override
public Action eventOccurred(final ODEStateAndDerivative state, final ODEEventDetector detector, final boolean increasing) {
// delegate to raw handler, fixing increasing status on the fly
@SuppressWarnings("unchecked")
final EventSlopeFilter<T> esf = (EventSlopeFilter<T>) detector;
return rawHandler.eventOccurred(state, esf, esf.filter.isTriggeredOnIncreasing());
}
/** {@inheritDoc} */
@Override
public ODEState resetState(final ODEEventDetector detector, final ODEStateAndDerivative state) {
// delegate to raw handler
@SuppressWarnings("unchecked")
final EventSlopeFilter<T> esf = (EventSlopeFilter<T>) detector;
return rawHandler.resetState(esf, state);
}
}
}