Vector.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.geometry;
import org.hipparchus.analysis.polynomials.SmoothStepFactory;
import org.hipparchus.exception.MathIllegalArgumentException;
import org.hipparchus.exception.MathRuntimeException;
import org.hipparchus.util.Blendable;
import java.text.NumberFormat;
/** This interface represents a generic vector in a vectorial space or a point in an affine space.
* @param <S> Type of the space.
* @param <V> Type of vector implementing this interface.
* @see Space
* @see Point
*/
public interface Vector<S extends Space, V extends Vector<S,V>> extends Point<S>, Blendable<Vector<S,V>> {
/** Get the null vector of the vectorial space or origin point of the affine space.
* @return null vector of the vectorial space or origin point of the affine space
*/
V getZero();
/** Get the L<sub>1</sub> norm for the vector.
* @return L<sub>1</sub> norm for the vector
*/
double getNorm1();
/** Get the L<sub>2</sub> norm for the vector.
* @return Euclidean norm for the vector
*/
double getNorm();
/** Get the square of the norm for the vector.
* @return square of the Euclidean norm for the vector
*/
double getNormSq();
/** Get the L<sub>∞</sub> norm for the vector.
* @return L<sub>∞</sub> norm for the vector
*/
double getNormInf();
/** Add a vector to the instance.
* @param v vector to add
* @return a new vector
*/
V add(Vector<S,V> v);
/** Add a scaled vector to the instance.
* @param factor scale factor to apply to v before adding it
* @param v vector to add
* @return a new vector
*/
V add(double factor, Vector<S,V> v);
/** Subtract a vector from the instance.
* @param v vector to subtract
* @return a new vector
*/
V subtract(Vector<S,V> v);
/** Subtract a scaled vector from the instance.
* @param factor scale factor to apply to v before subtracting it
* @param v vector to subtract
* @return a new vector
*/
V subtract(double factor, Vector<S,V> v);
/** Get the opposite of the instance.
* @return a new vector which is opposite to the instance
*/
V negate();
/** Get a normalized vector aligned with the instance.
* @return a new normalized vector
* @exception MathRuntimeException if the norm is zero
*/
default V normalize() throws MathRuntimeException{
double s = getNorm();
if (s == 0) {
throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
}
return scalarMultiply(1 / s);
}
/** Multiply the instance by a scalar.
* @param a scalar
* @return a new vector
*/
V scalarMultiply(double a);
/**
* Returns true if any coordinate of this vector is infinite and none are NaN;
* false otherwise
* @return true if any coordinate of this vector is infinite and none are NaN;
* false otherwise
*/
boolean isInfinite();
/** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
* <p>Calling this method is equivalent to calling:
* <code>q.subtract(p).getNorm1()</code> except that no intermediate
* vector is built</p>
* @param v second vector
* @return the distance between the instance and p according to the L<sub>1</sub> norm
*/
double distance1(Vector<S,V> v);
/** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
* <p>Calling this method is equivalent to calling:
* <code>q.subtract(p).getNormInf()</code> except that no intermediate
* vector is built</p>
* @param v second vector
* @return the distance between the instance and p according to the L<sub>∞</sub> norm
*/
double distanceInf(Vector<S,V> v);
/** Compute the square of the distance between the instance and another vector.
* <p>Calling this method is equivalent to calling:
* <code>q.subtract(p).getNormSq()</code> except that no intermediate
* vector is built</p>
* @param v second vector
* @return the square of the distance between the instance and p
*/
double distanceSq(Vector<S,V> v);
/** Compute the dot-product of the instance and another vector.
* @param v second vector
* @return the dot product this.v
*/
double dotProduct(Vector<S,V> v);
/** Get a string representation of this vector.
* @param format the custom format for components
* @return a string representation of this vector
*/
String toString(NumberFormat format);
/** {@inheritDoc} */
@Override
default V blendArithmeticallyWith(Vector<S,V> other, double blendingValue)
throws MathIllegalArgumentException {
SmoothStepFactory.checkBetweenZeroAndOneIncluded(blendingValue);
return this.scalarMultiply(1 - blendingValue).add(other.scalarMultiply(blendingValue));
}
}