Vector.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry;
- import org.hipparchus.analysis.polynomials.SmoothStepFactory;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.util.Blendable;
- import java.text.NumberFormat;
- /** This interface represents a generic vector in a vectorial space or a point in an affine space.
- * @param <S> Type of the space.
- * @param <V> Type of vector implementing this interface.
- * @see Space
- * @see Point
- */
- public interface Vector<S extends Space, V extends Vector<S, V>> extends Point<S, V>, Blendable<V> {
- /** Get the null vector of the vectorial space or origin point of the affine space.
- * @return null vector of the vectorial space or origin point of the affine space
- */
- V getZero();
- /** Get the L<sub>1</sub> norm for the vector.
- * @return L<sub>1</sub> norm for the vector
- */
- double getNorm1();
- /** Get the L<sub>2</sub> norm for the vector.
- * @return Euclidean norm for the vector
- */
- double getNorm();
- /** Get the square of the norm for the vector.
- * @return square of the Euclidean norm for the vector
- */
- double getNormSq();
- /** Get the L<sub>∞</sub> norm for the vector.
- * @return L<sub>∞</sub> norm for the vector
- */
- double getNormInf();
- /** Add a vector to the instance.
- * @param v vector to add
- * @return a new vector
- */
- V add(V v);
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- V add(double factor, V v);
- /** Subtract a vector from the instance.
- * @param v vector to subtract
- * @return a new vector
- */
- V subtract(V v);
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- V subtract(double factor, V v);
- /** Get the opposite of the instance.
- * @return a new vector which is opposite to the instance
- */
- V negate();
- /** Get a normalized vector aligned with the instance.
- * @return a new normalized vector
- * @exception MathRuntimeException if the norm is zero
- */
- default V normalize() throws MathRuntimeException{
- double s = getNorm();
- if (s == 0) {
- throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
- }
- return scalarMultiply(1 / s);
- }
- /** Multiply the instance by a scalar.
- * @param a scalar
- * @return a new vector
- */
- V scalarMultiply(double a);
- /**
- * Returns true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- * @return true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- */
- boolean isInfinite();
- /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>1</sub> norm
- */
- double distance1(V v);
- /** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>∞</sub> norm
- */
- double distanceInf(V v);
- /** Compute the square of the distance between the instance and another vector.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the square of the distance between the instance and p
- */
- double distanceSq(V v);
- /** Compute the dot-product of the instance and another vector.
- * @param v second vector
- * @return the dot product this.v
- */
- double dotProduct(V v);
- /** Get a string representation of this vector.
- * @param format the custom format for components
- * @return a string representation of this vector
- */
- String toString(NumberFormat format);
- /** {@inheritDoc} */
- @Override
- default V blendArithmeticallyWith(V other, double blendingValue)
- throws MathIllegalArgumentException {
- SmoothStepFactory.checkBetweenZeroAndOneIncluded(blendingValue);
- return this.scalarMultiply(1 - blendingValue).add(other.scalarMultiply(blendingValue));
- }
- }