S2Point.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.spherical.twod;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.Point;
- import org.hipparchus.geometry.Space;
- import org.hipparchus.geometry.euclidean.threed.Vector3D;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathUtils;
- import org.hipparchus.util.SinCos;
- /** This class represents a point on the 2-sphere.
- * <p>
- * We use the mathematical convention to use the azimuthal angle \( \theta \)
- * in the x-y plane as the first coordinate, and the polar angle \( \varphi \)
- * as the second coordinate (see <a
- * href="http://mathworld.wolfram.com/SphericalCoordinates.html">Spherical
- * Coordinates</a> in MathWorld).
- * </p>
- * <p>Instances of this class are guaranteed to be immutable.</p>
- */
- public class S2Point implements Point<Sphere2D, S2Point> {
- /** +I (coordinates: \( \theta = 0, \varphi = \pi/2 \)). */
- public static final S2Point PLUS_I = new S2Point(0, MathUtils.SEMI_PI, Vector3D.PLUS_I);
- /** +J (coordinates: \( \theta = \pi/2, \varphi = \pi/2 \))). */
- public static final S2Point PLUS_J = new S2Point(MathUtils.SEMI_PI, MathUtils.SEMI_PI, Vector3D.PLUS_J);
- /** +K (coordinates: \( \theta = any angle, \varphi = 0 \)). */
- public static final S2Point PLUS_K = new S2Point(0, 0, Vector3D.PLUS_K);
- /** -I (coordinates: \( \theta = \pi, \varphi = \pi/2 \)). */
- public static final S2Point MINUS_I = new S2Point(FastMath.PI, MathUtils.SEMI_PI, Vector3D.MINUS_I);
- /** -J (coordinates: \( \theta = 3\pi/2, \varphi = \pi/2 \)). */
- public static final S2Point MINUS_J = new S2Point(1.5 * FastMath.PI, MathUtils.SEMI_PI, Vector3D.MINUS_J);
- /** -K (coordinates: \( \theta = any angle, \varphi = \pi \)). */
- public static final S2Point MINUS_K = new S2Point(0, FastMath.PI, Vector3D.MINUS_K);
- // CHECKSTYLE: stop ConstantName
- /** A vector with all coordinates set to NaN. */
- public static final S2Point NaN = new S2Point(Double.NaN, Double.NaN, Vector3D.NaN);
- // CHECKSTYLE: resume ConstantName
- /** Serializable UID. */
- private static final long serialVersionUID = 20131218L;
- /** Azimuthal angle \( \theta \) in the x-y plane. */
- private final double theta;
- /** Polar angle \( \varphi \). */
- private final double phi;
- /** Corresponding 3D normalized vector. */
- private final Vector3D vector;
- /** Simple constructor.
- * Build a vector from its spherical coordinates
- * @param theta azimuthal angle \( \theta \) in the x-y plane
- * @param phi polar angle \( \varphi \)
- * @see #getTheta()
- * @see #getPhi()
- * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range
- */
- public S2Point(final double theta, final double phi)
- throws MathIllegalArgumentException {
- this(theta, phi, vector(theta, phi));
- }
- /** Simple constructor.
- * Build a vector from its underlying 3D vector
- * @param vector 3D vector
- * @exception MathRuntimeException if vector norm is zero
- */
- public S2Point(final Vector3D vector) throws MathRuntimeException {
- this(FastMath.atan2(vector.getY(), vector.getX()), Vector3D.angle(Vector3D.PLUS_K, vector),
- vector.normalize());
- }
- /** Build a point from its internal components.
- * @param theta azimuthal angle \( \theta \) in the x-y plane
- * @param phi polar angle \( \varphi \)
- * @param vector corresponding vector
- */
- private S2Point(final double theta, final double phi, final Vector3D vector) {
- this.theta = theta;
- this.phi = phi;
- this.vector = vector;
- }
- /** Build the normalized vector corresponding to spherical coordinates.
- * @param theta azimuthal angle \( \theta \) in the x-y plane
- * @param phi polar angle \( \varphi \)
- * @return normalized vector
- * @exception MathIllegalArgumentException if \( \varphi \) is not in the [\( 0; \pi \)] range
- */
- private static Vector3D vector(final double theta, final double phi)
- throws MathIllegalArgumentException {
- MathUtils.checkRangeInclusive(phi, 0, FastMath.PI);
- final SinCos scTheta = FastMath.sinCos(theta);
- final SinCos scPhi = FastMath.sinCos(phi);
- return new Vector3D(scTheta.cos() * scPhi.sin(), scTheta.sin() * scPhi.sin(), scPhi.cos());
- }
- /** Get the azimuthal angle \( \theta \) in the x-y plane.
- * @return azimuthal angle \( \theta \) in the x-y plane
- * @see #S2Point(double, double)
- */
- public double getTheta() {
- return theta;
- }
- /** Get the polar angle \( \varphi \).
- * @return polar angle \( \varphi \)
- * @see #S2Point(double, double)
- */
- public double getPhi() {
- return phi;
- }
- /** Get the corresponding normalized vector in the 3D euclidean space.
- * @return normalized vector
- */
- public Vector3D getVector() {
- return vector;
- }
- /** {@inheritDoc} */
- @Override
- public Space getSpace() {
- return Sphere2D.getInstance();
- }
- /** {@inheritDoc} */
- @Override
- public boolean isNaN() {
- return Double.isNaN(theta) || Double.isNaN(phi);
- }
- /** Get the opposite of the instance.
- * @return a new vector which is opposite to the instance
- */
- public S2Point negate() {
- return new S2Point(FastMath.PI + theta, FastMath.PI - phi, vector.negate());
- }
- /** {@inheritDoc} */
- @Override
- public double distance(final S2Point point) {
- return distance(this, point);
- }
- /** Compute the distance (angular separation) between two points.
- * @param p1 first vector
- * @param p2 second vector
- * @return the angular separation between p1 and p2
- */
- public static double distance(S2Point p1, S2Point p2) {
- return Vector3D.angle(p1.vector, p2.vector);
- }
- /** {@inheritDoc} */
- @Override
- public S2Point moveTowards(final S2Point other, final double ratio) {
- final double alpha = Vector3D.angle(vector, other.vector);
- if (alpha == 0) {
- // special case to avoid division by zero in normalization below
- return this;
- }
- else {
- final double sA = (FastMath.sin((1 - ratio) * alpha));
- final double sB = FastMath.sin(ratio * alpha);
- return new S2Point(new Vector3D(sA, vector, sB, other.vector));
- }
- }
- /**
- * Test for the equality of two points on the 2-sphere.
- * <p>
- * If all coordinates of two points are exactly the same, and none are
- * {@code Double.NaN}, the two points are considered to be equal.
- * </p>
- * <p>
- * {@code NaN} coordinates are considered to affect globally the point
- * and be equals to each other - i.e, if either (or all) coordinates of the
- * point are equal to {@code Double.NaN}, the point is equal to
- * {@link #NaN}.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two points on the 2-sphere objects are equal, false if
- * object is null, not an instance of S2Point, or
- * not equal to this S2Point instance
- *
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof S2Point) {
- final S2Point rhs = (S2Point) other;
- return theta == rhs.theta && phi == rhs.phi || isNaN() && rhs.isNaN();
- }
- return false;
- }
- /**
- * Test for the equality of two points on the 2-sphere.
- * <p>
- * If all coordinates of two points are exactly the same, and none are
- * {@code Double.NaN}, the two points are considered to be equal.
- * </p>
- * <p>
- * In compliance with IEEE754 handling, if any coordinates of any of the
- * two points are {@code NaN}, then the points are considered different.
- * This implies that {@link #NaN S2Point.NaN}.equals({@link #NaN S2Point.NaN})
- * returns {@code false} despite the instance is checked against itself.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two points objects are equal, false if
- * object is null, not an instance of S2Point, or
- * not equal to this S2Point instance
- * @since 2.1
- */
- public boolean equalsIeee754(Object other) {
- if (this == other && !isNaN()) {
- return true;
- }
- if (other instanceof S2Point) {
- final S2Point rhs = (S2Point) other;
- return phi == rhs.phi && theta == rhs.theta;
- }
- return false;
- }
- /**
- * Get a hashCode for the point.
- * <p>
- * All NaN values have the same hash code.</p>
- *
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- if (isNaN()) {
- return 542;
- }
- return 134 * (37 * MathUtils.hash(theta) + MathUtils.hash(phi));
- }
- @Override
- public String toString() {
- return "S2Point{" +
- "theta=" + theta +
- ", phi=" + phi +
- '}';
- }
- }