Vector2D.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.euclidean.twod;
- import java.text.NumberFormat;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.Space;
- import org.hipparchus.geometry.Vector;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.MathUtils;
- /** This class represents a 2D vector.
- * <p>Instances of this class are guaranteed to be immutable.</p>
- */
- public class Vector2D implements Vector<Euclidean2D, Vector2D> {
- /** Origin (coordinates: 0, 0). */
- public static final Vector2D ZERO = new Vector2D(0, 0);
- /** First canonical vector (coordinates: 1, 0).
- * @since 1.6
- */
- public static final Vector2D PLUS_I = new Vector2D(1, 0);
- /** Opposite of the first canonical vector (coordinates: -1, 0).
- * @since 1.6
- */
- public static final Vector2D MINUS_I = new Vector2D(-1, 0);
- /** Second canonical vector (coordinates: 0, 1).
- * @since 1.6
- */
- public static final Vector2D PLUS_J = new Vector2D(0, 1);
- /** Opposite of the second canonical vector (coordinates: 0, -1).
- * @since 1.6
- */
- public static final Vector2D MINUS_J = new Vector2D(0, -1);
- // CHECKSTYLE: stop ConstantName
- /** A vector with all coordinates set to NaN. */
- public static final Vector2D NaN = new Vector2D(Double.NaN, Double.NaN);
- // CHECKSTYLE: resume ConstantName
- /** A vector with all coordinates set to positive infinity. */
- public static final Vector2D POSITIVE_INFINITY =
- new Vector2D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY);
- /** A vector with all coordinates set to negative infinity. */
- public static final Vector2D NEGATIVE_INFINITY =
- new Vector2D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY);
- /** Serializable UID. */
- private static final long serialVersionUID = 266938651998679754L;
- /** Abscissa. */
- private final double x;
- /** Ordinate. */
- private final double y;
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param x abscissa
- * @param y ordinate
- * @see #getX()
- * @see #getY()
- */
- public Vector2D(double x, double y) {
- this.x = x;
- this.y = y;
- }
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param v coordinates array
- * @exception MathIllegalArgumentException if array does not have 2 elements
- * @see #toArray()
- */
- public Vector2D(double[] v) throws MathIllegalArgumentException {
- if (v.length != 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- v.length, 2);
- }
- this.x = v[0];
- this.y = v[1];
- }
- /** Multiplicative constructor
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public Vector2D(double a, Vector2D u) {
- this.x = a * u.x;
- this.y = a * u.y;
- }
- /** Linear constructor
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2) {
- this.x = a1 * u1.x + a2 * u2.x;
- this.y = a1 * u1.y + a2 * u2.y;
- }
- /** Linear constructor
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2,
- double a3, Vector2D u3) {
- this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x;
- this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y;
- }
- /** Linear constructor
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2,
- double a3, Vector2D u3, double a4, Vector2D u4) {
- this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x;
- this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y;
- }
- /** Get the abscissa of the vector.
- * @return abscissa of the vector
- * @see #Vector2D(double, double)
- */
- public double getX() {
- return x;
- }
- /** Get the ordinate of the vector.
- * @return ordinate of the vector
- * @see #Vector2D(double, double)
- */
- public double getY() {
- return y;
- }
- /** Get the vector coordinates as a dimension 2 array.
- * @return vector coordinates
- * @see #Vector2D(double[])
- */
- public double[] toArray() {
- return new double[] { x, y };
- }
- /** {@inheritDoc} */
- @Override
- public Space getSpace() {
- return Euclidean2D.getInstance();
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D getZero() {
- return ZERO;
- }
- /** {@inheritDoc} */
- @Override
- public double getNorm1() {
- return FastMath.abs(x) + FastMath.abs(y);
- }
- /** {@inheritDoc} */
- @Override
- public double getNorm() {
- return FastMath.sqrt (x * x + y * y);
- }
- /** {@inheritDoc} */
- @Override
- public double getNormSq() {
- return x * x + y * y;
- }
- /** {@inheritDoc} */
- @Override
- public double getNormInf() {
- return FastMath.max(FastMath.abs(x), FastMath.abs(y));
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D add(Vector2D v) {
- return new Vector2D(x + v.getX(), y + v.getY());
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D add(double factor, Vector2D v) {
- return new Vector2D(x + factor * v.getX(), y + factor * v.getY());
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D subtract(Vector2D p) {
- return new Vector2D(x - p.x, y - p.y);
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D subtract(double factor, Vector2D v) {
- return new Vector2D(x - factor * v.getX(), y - factor * v.getY());
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static double angle(Vector2D v1, Vector2D v2) throws MathRuntimeException {
- double normProduct = v1.getNorm() * v2.getNorm();
- if (normProduct == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- double dot = v1.dotProduct(v2);
- double threshold = normProduct * 0.9999;
- if (FastMath.abs(dot) > threshold) {
- // the vectors are almost aligned, compute using the sine
- final double n = FastMath.abs(MathArrays.linearCombination(v1.x, v2.y, -v1.y, v2.x));
- if (dot >= 0) {
- return FastMath.asin(n / normProduct);
- }
- return FastMath.PI - FastMath.asin(n / normProduct);
- }
- // the vectors are sufficiently separated to use the cosine
- return FastMath.acos(dot / normProduct);
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D negate() {
- return new Vector2D(-x, -y);
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D scalarMultiply(double a) {
- return new Vector2D(a * x, a * y);
- }
- /** {@inheritDoc} */
- @Override
- public boolean isNaN() {
- return Double.isNaN(x) || Double.isNaN(y);
- }
- /** {@inheritDoc} */
- @Override
- public boolean isInfinite() {
- return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y));
- }
- /** {@inheritDoc} */
- @Override
- public double distance1(Vector2D p) {
- final double dx = FastMath.abs(p.x - x);
- final double dy = FastMath.abs(p.y - y);
- return dx + dy;
- }
- /** {@inheritDoc} */
- @Override
- public double distance(Vector2D p) {
- final double dx = p.x - x;
- final double dy = p.y - y;
- return FastMath.sqrt(dx * dx + dy * dy);
- }
- /** {@inheritDoc} */
- @Override
- public double distanceInf(Vector2D p) {
- final double dx = FastMath.abs(p.x - x);
- final double dy = FastMath.abs(p.y - y);
- return FastMath.max(dx, dy);
- }
- /** {@inheritDoc} */
- @Override
- public double distanceSq(Vector2D p) {
- final double dx = p.x - x;
- final double dy = p.y - y;
- return dx * dx + dy * dy;
- }
- /** {@inheritDoc} */
- @Override
- public double dotProduct(final Vector2D v) {
- return MathArrays.linearCombination(x, v.x, y, v.y);
- }
- /**
- * Compute the cross-product of the instance and the given points.
- * <p>
- * The cross product can be used to determine the location of a point
- * with regard to the line formed by (p1, p2) and is calculated as:
- * \[
- * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
- * \]
- * with \(p3 = (x_3, y_3)\) being this instance.
- * <p>
- * If the result is 0, the points are collinear, i.e. lie on a single straight line L;
- * if it is positive, this point lies to the left, otherwise to the right of the line
- * formed by (p1, p2).
- *
- * @param p1 first point of the line
- * @param p2 second point of the line
- * @return the cross-product
- *
- * @see <a href="http://en.wikipedia.org/wiki/Cross_product">Cross product (Wikipedia)</a>
- */
- public double crossProduct(final Vector2D p1, final Vector2D p2) {
- final double x1 = p2.getX() - p1.getX();
- final double y1 = getY() - p1.getY();
- final double x2 = getX() - p1.getX();
- final double y2 = p2.getY() - p1.getY();
- return MathArrays.linearCombination(x1, y1, -x2, y2);
- }
- /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @return the distance between p1 and p2 according to the L<sub>1</sub> norm
- * @since 1.6
- */
- public static double distance1(Vector2D p1, Vector2D p2) {
- return p1.distance1(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static double distance(Vector2D p1, Vector2D p2) {
- return p1.distance(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @return the distance between p1 and p2 according to the L<sub>∞</sub> norm
- */
- public static double distanceInf(Vector2D p1, Vector2D p2) {
- return p1.distanceInf(p2);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @return the square of the distance between p1 and p2
- */
- public static double distanceSq(Vector2D p1, Vector2D p2) {
- return p1.distanceSq(p2);
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D moveTowards(final Vector2D other, final double ratio) {
- return new Vector2D(x + ratio * (other.x - x),
- y + ratio * (other.y - y));
- }
- /** Compute the orientation of a triplet of points.
- * @param p first vector of the triplet
- * @param q second vector of the triplet
- * @param r third vector of the triplet
- * @return a positive value if (p, q, r) defines a counterclockwise oriented
- * triangle, a negative value if (p, q, r) defines a clockwise oriented
- * triangle, and 0 if (p, q, r) are collinear or some points are equal
- * @since 1.2
- */
- public static double orientation(final Vector2D p, final Vector2D q, final Vector2D r) {
- return MathArrays.linearCombination(new double[] {
- p.getX(), -p.getX(), q.getX(), -q.getX(), r.getX(), -r.getX()
- }, new double[] {
- q.getY(), r.getY(), r.getY(), p.getY(), p.getY(), q.getY()
- });
- }
- /**
- * Test for the equality of two 2D vectors.
- * <p>
- * If all coordinates of two 2D vectors are exactly the same, and none are
- * {@code Double.NaN}, the two 2D vectors are considered to be equal.
- * </p>
- * <p>
- * {@code NaN} coordinates are considered to affect globally the vector
- * and be equals to each other - i.e, if either (or all) coordinates of the
- * 2D vector are equal to {@code Double.NaN}, the 2D vector is equal to
- * {@link #NaN}.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two 2D vector objects are equal, false if
- * object is null, not an instance of Vector2D, or
- * not equal to this Vector2D instance
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof Vector2D) {
- final Vector2D rhs = (Vector2D)other;
- return x == rhs.x && y == rhs.y || isNaN() && rhs.isNaN();
- }
- return false;
- }
- /**
- * Test for the equality of two 2D vectors.
- * <p>
- * If all coordinates of two 2D vectors are exactly the same, and none are
- * {@code NaN}, the two 2D vectors are considered to be equal.
- * </p>
- * <p>
- * In compliance with IEEE754 handling, if any coordinates of any of the
- * two vectors are {@code NaN}, then the vectors are considered different.
- * This implies that {@link #NaN Vector2D.NaN}.equals({@link #NaN Vector2D.NaN})
- * returns {@code false} despite the instance is checked against itself.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two 2D vector objects are equal, false if
- * object is null, not an instance of Vector2D, or
- * not equal to this Vector2D instance
- * @since 2.1
- */
- public boolean equalsIeee754(Object other) {
- if (this == other && !isNaN()) {
- return true;
- }
- if (other instanceof Vector2D) {
- final Vector2D rhs = (Vector2D) other;
- return x == rhs.x && y == rhs.y;
- }
- return false;
- }
- /**
- * Get a hashCode for the 2D vector.
- * <p>
- * All NaN values have the same hash code.</p>
- *
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- if (isNaN()) {
- return 542;
- }
- return 122 * (76 * MathUtils.hash(x) + MathUtils.hash(y));
- }
- /** Get a string representation of this vector.
- * @return a string representation of this vector
- */
- @Override
- public String toString() {
- return Vector2DFormat.getVector2DFormat().format(this);
- }
- /** {@inheritDoc} */
- @Override
- public String toString(final NumberFormat format) {
- return new Vector2DFormat(format).format(this);
- }
- }