FieldVector2D.java
- /*
- * Licensed to the Hipparchus project under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The Hipparchus project licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.hipparchus.geometry.euclidean.twod;
- import java.text.NumberFormat;
- import org.hipparchus.Field;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.LocalizedGeometryFormats;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- /**
- * This class is a re-implementation of {@link Vector2D} using {@link CalculusFieldElement}.
- * <p>Instance of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- * @since 1.6
- */
- public class FieldVector2D<T extends CalculusFieldElement<T>> {
- /** Abscissa. */
- private final T x;
- /** Ordinate. */
- private final T y;
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param x abscissa
- * @param y ordinate
- * @see #getX()
- * @see #getY()
- */
- public FieldVector2D(final T x, final T y) {
- this.x = x;
- this.y = y;
- }
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param v coordinates array
- * @exception MathIllegalArgumentException if array does not have 2 elements
- * @see #toArray()
- */
- public FieldVector2D(final T[] v) throws MathIllegalArgumentException {
- if (v.length != 2) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- v.length, 2);
- }
- this.x = v[0];
- this.y = v[1];
- }
- /** Multiplicative constructor
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector2D(final T a, final FieldVector2D<T> u) {
- this.x = a.multiply(u.x);
- this.y = a.multiply(u.y);
- }
- /** Multiplicative constructor
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector2D(final T a, final Vector2D u) {
- this.x = a.multiply(u.getX());
- this.y = a.multiply(u.getY());
- }
- /** Multiplicative constructor
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector2D(final double a, final FieldVector2D<T> u) {
- this.x = u.x.multiply(a);
- this.y = u.y.multiply(a);
- }
- /** Linear constructor
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector2D(final T a1, final FieldVector2D<T> u1, final T a2, final FieldVector2D<T> u2) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
- }
- /** Linear constructor.
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector2D(final T a1, final Vector2D u1,
- final T a2, final Vector2D u2) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2);
- }
- /** Linear constructor.
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector2D(final double a1, final FieldVector2D<T> u1,
- final double a2, final FieldVector2D<T> u2) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector2D(final T a1, final FieldVector2D<T> u1,
- final T a2, final FieldVector2D<T> u2,
- final T a3, final FieldVector2D<T> u3) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector2D(final T a1, final Vector2D u1,
- final T a2, final Vector2D u2,
- final T a3, final Vector2D u3) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3);
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector2D(final double a1, final FieldVector2D<T> u1,
- final double a2, final FieldVector2D<T> u2,
- final double a3, final FieldVector2D<T> u3) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector2D(final T a1, final FieldVector2D<T> u1,
- final T a2, final FieldVector2D<T> u2,
- final T a3, final FieldVector2D<T> u3,
- final T a4, final FieldVector2D<T> u4) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector2D(final T a1, final Vector2D u1,
- final T a2, final Vector2D u2,
- final T a3, final Vector2D u3,
- final T a4, final Vector2D u4) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3, u4.getX(), a4);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3, u4.getY(), a4);
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector2D(final double a1, final FieldVector2D<T> u1,
- final double a2, final FieldVector2D<T> u2,
- final double a3, final FieldVector2D<T> u3,
- final double a4, final FieldVector2D<T> u4) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
- }
- /** Build a {@link FieldVector2D} from a {@link Vector2D}.
- * @param field field for the components
- * @param v vector to convert
- */
- public FieldVector2D(final Field<T> field, final Vector2D v) {
- this.x = field.getZero().add(v.getX());
- this.y = field.getZero().add(v.getY());
- }
- /** Get null vector (coordinates: 0, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getZero(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.ZERO);
- }
- /** Get first canonical vector (coordinates: 1, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getPlusI(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.PLUS_I);
- }
- /** Get opposite of the first canonical vector (coordinates: -1).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getMinusI(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.MINUS_I);
- }
- /** Get second canonical vector (coordinates: 0, 1).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getPlusJ(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.PLUS_J);
- }
- /** Get opposite of the second canonical vector (coordinates: 0, -1).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getMinusJ(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.MINUS_J);
- }
- /** Get a vector with all coordinates set to NaN.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getNaN(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.NaN);
- }
- /** Get a vector with all coordinates set to positive infinity.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getPositiveInfinity(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.POSITIVE_INFINITY);
- }
- /** Get a vector with all coordinates set to negative infinity.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector2D<T> getNegativeInfinity(final Field<T> field) {
- return new FieldVector2D<>(field, Vector2D.NEGATIVE_INFINITY);
- }
- /** Get the abscissa of the vector.
- * @return abscissa of the vector
- * @see #FieldVector2D(CalculusFieldElement, CalculusFieldElement)
- */
- public T getX() {
- return x;
- }
- /** Get the ordinate of the vector.
- * @return ordinate of the vector
- * @see #FieldVector2D(CalculusFieldElement, CalculusFieldElement)
- */
- public T getY() {
- return y;
- }
- /** Get the vector coordinates as a dimension 2 array.
- * @return vector coordinates
- * @see #FieldVector2D(CalculusFieldElement[])
- */
- public T[] toArray() {
- final T[] array = MathArrays.buildArray(x.getField(), 2);
- array[0] = x;
- array[1] = y;
- return array;
- }
- /** Convert to a constant vector without extra field parts.
- * @return a constant vector
- */
- public Vector2D toVector2D() {
- return new Vector2D(x.getReal(), y.getReal());
- }
- /** Get the L<sub>1</sub> norm for the vector.
- * @return L<sub>1</sub> norm for the vector
- */
- public T getNorm1() {
- return x.abs().add(y.abs());
- }
- /** Get the L<sub>2</sub> norm for the vector.
- * @return Euclidean norm for the vector
- */
- public T getNorm() {
- // there are no cancellation problems here, so we use the straightforward formula
- return x.square().add(y.square()).sqrt();
- }
- /** Get the square of the norm for the vector.
- * @return square of the Euclidean norm for the vector
- */
- public T getNormSq() {
- // there are no cancellation problems here, so we use the straightforward formula
- return x.square().add(y.square());
- }
- /** Get the L<sub>∞</sub> norm for the vector.
- * @return L<sub>∞</sub> norm for the vector
- */
- public T getNormInf() {
- return FastMath.max(FastMath.abs(x), FastMath.abs(y));
- }
- /** Add a vector to the instance.
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final FieldVector2D<T> v) {
- return new FieldVector2D<>(x.add(v.x), y.add(v.y));
- }
- /** Add a vector to the instance.
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final Vector2D v) {
- return new FieldVector2D<>(x.add(v.getX()), y.add(v.getY()));
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final T factor, final FieldVector2D<T> v) {
- return new FieldVector2D<>(x.getField().getOne(), this, factor, v);
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final T factor, final Vector2D v) {
- return new FieldVector2D<>(x.add(factor.multiply(v.getX())),
- y.add(factor.multiply(v.getY())));
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final double factor, final FieldVector2D<T> v) {
- return new FieldVector2D<>(1.0, this, factor, v);
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector2D<T> add(final double factor, final Vector2D v) {
- return new FieldVector2D<>(x.add(factor * v.getX()),
- y.add(factor * v.getY()));
- }
- /** Subtract a vector from the instance.
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final FieldVector2D<T> v) {
- return new FieldVector2D<>(x.subtract(v.x), y.subtract(v.y));
- }
- /** Subtract a vector from the instance.
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final Vector2D v) {
- return new FieldVector2D<>(x.subtract(v.getX()), y.subtract(v.getY()));
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final T factor, final FieldVector2D<T> v) {
- return new FieldVector2D<>(x.getField().getOne(), this, factor.negate(), v);
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final T factor, final Vector2D v) {
- return new FieldVector2D<>(x.subtract(factor.multiply(v.getX())),
- y.subtract(factor.multiply(v.getY())));
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final double factor, final FieldVector2D<T> v) {
- return new FieldVector2D<>(1.0, this, -factor, v);
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector2D<T> subtract(final double factor, final Vector2D v) {
- return new FieldVector2D<>(x.subtract(factor * v.getX()),
- y.subtract(factor * v.getY()));
- }
- /** Get a normalized vector aligned with the instance.
- * @return a new normalized vector
- * @exception MathRuntimeException if the norm is zero
- */
- public FieldVector2D<T> normalize() throws MathRuntimeException {
- final T s = getNorm();
- if (s.getReal() == 0) {
- throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
- }
- return scalarMultiply(s.reciprocal());
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final FieldVector2D<T> v1, final FieldVector2D<T> v2)
- throws MathRuntimeException {
- final T normProduct = v1.getNorm().multiply(v2.getNorm());
- if (normProduct.getReal() == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- final T dot = v1.dotProduct(v2);
- final double threshold = normProduct.getReal() * 0.9999;
- if (FastMath.abs(dot.getReal()) > threshold) {
- // the vectors are almost aligned, compute using the sine
- final T n = FastMath.abs(dot.linearCombination(v1.x, v2.y, v1.y.negate(), v2.x));
- if (dot.getReal() >= 0) {
- return FastMath.asin(n.divide(normProduct));
- }
- return FastMath.asin(n.divide(normProduct)).negate().add(dot.getPi());
- }
- // the vectors are sufficiently separated to use the cosine
- return FastMath.acos(dot.divide(normProduct));
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final FieldVector2D<T> v1, final Vector2D v2)
- throws MathRuntimeException {
- final T normProduct = v1.getNorm().multiply(v2.getNorm());
- if (normProduct.getReal() == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- final T dot = v1.dotProduct(v2);
- final double threshold = normProduct.getReal() * 0.9999;
- if (FastMath.abs(dot.getReal()) > threshold) {
- // the vectors are almost aligned, compute using the sine
- final T n = FastMath.abs(dot.linearCombination(v2.getY(), v1.x, v2.getX(), v1.y.negate()));
- if (dot.getReal() >= 0) {
- return FastMath.asin(n.divide(normProduct));
- }
- return FastMath.asin(n.divide(normProduct)).negate().add(dot.getPi());
- }
- // the vectors are sufficiently separated to use the cosine
- return FastMath.acos(dot.divide(normProduct));
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final Vector2D v1, final FieldVector2D<T> v2)
- throws MathRuntimeException {
- return angle(v2, v1);
- }
- /** Get the opposite of the instance.
- * @return a new vector which is opposite to the instance
- */
- public FieldVector2D<T> negate() {
- return new FieldVector2D<>(x.negate(), y.negate());
- }
- /** Multiply the instance by a scalar.
- * @param a scalar
- * @return a new vector
- */
- public FieldVector2D<T> scalarMultiply(final T a) {
- return new FieldVector2D<>(x.multiply(a), y.multiply(a));
- }
- /** Multiply the instance by a scalar.
- * @param a scalar
- * @return a new vector
- */
- public FieldVector2D<T> scalarMultiply(final double a) {
- return new FieldVector2D<>(x.multiply(a), y.multiply(a));
- }
- /**
- * Returns true if any coordinate of this vector is NaN; false otherwise
- * @return true if any coordinate of this vector is NaN; false otherwise
- */
- public boolean isNaN() {
- return Double.isNaN(x.getReal()) || Double.isNaN(y.getReal());
- }
- /**
- * Returns true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- * @return true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- */
- public boolean isInfinite() {
- return !isNaN() && (Double.isInfinite(x.getReal()) || Double.isInfinite(y.getReal()));
- }
- /**
- * Test for the equality of two 2D vectors.
- * <p>
- * If all coordinates of two 2D vectors are exactly the same, and none of their
- * {@link CalculusFieldElement#getReal() real part} are <code>NaN</code>, the
- * two 2D vectors are considered to be equal.
- * </p>
- * <p>
- * <code>NaN</code> coordinates are considered to affect globally the vector
- * and be equals to each other - i.e, if either (or all) real part of the
- * coordinates of the 3D vector are <code>NaN</code>, the 2D vector is <code>NaN</code>.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two 2D vector objects are equal, false if
- * object is null, not an instance of FieldVector2D, or
- * not equal to this FieldVector2D instance
- *
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof FieldVector2D) {
- @SuppressWarnings("unchecked")
- final FieldVector2D<T> rhs = (FieldVector2D<T>) other;
- if (rhs.isNaN()) {
- return this.isNaN();
- }
- return x.equals(rhs.x) && y.equals(rhs.y);
- }
- return false;
- }
- /**
- * Get a hashCode for the 3D vector.
- * <p>
- * All NaN values have the same hash code.</p>
- *
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- if (isNaN()) {
- return 542;
- }
- return 122 * (76 * x.hashCode() + y.hashCode());
- }
- /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>1</sub> norm
- */
- public T distance1(final FieldVector2D<T> v) {
- final T dx = v.x.subtract(x).abs();
- final T dy = v.y.subtract(y).abs();
- return dx.add(dy);
- }
- /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>1</sub> norm
- */
- public T distance1(final Vector2D v) {
- final T dx = x.subtract(v.getX()).abs();
- final T dy = y.subtract(v.getY()).abs();
- return dx.add(dy);
- }
- /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>2</sub> norm
- */
- public T distance(final FieldVector2D<T> v) {
- final T dx = v.x.subtract(x);
- final T dy = v.y.subtract(y);
- return dx.square().add(dy.square()).sqrt();
- }
- /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>2</sub> norm
- */
- public T distance(final Vector2D v) {
- final T dx = x.subtract(v.getX());
- final T dy = y.subtract(v.getY());
- return dx.square().add(dy.square()).sqrt();
- }
- /** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>∞</sub> norm
- */
- public T distanceInf(final FieldVector2D<T> v) {
- final T dx = FastMath.abs(x.subtract(v.x));
- final T dy = FastMath.abs(y.subtract(v.y));
- return FastMath.max(dx, dy);
- }
- /** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>∞</sub> norm
- */
- public T distanceInf(final Vector2D v) {
- final T dx = FastMath.abs(x.subtract(v.getX()));
- final T dy = FastMath.abs(y.subtract(v.getY()));
- return FastMath.max(dx, dy);
- }
- /** Compute the square of the distance between the instance and another vector.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the square of the distance between the instance and p
- */
- public T distanceSq(final FieldVector2D<T> v) {
- final T dx = v.x.subtract(x);
- final T dy = v.y.subtract(y);
- return dx.square().add(dy.square());
- }
- /** Compute the square of the distance between the instance and another vector.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the square of the distance between the instance and p
- */
- public T distanceSq(final Vector2D v) {
- final T dx = x.subtract(v.getX());
- final T dy = y.subtract(v.getY());
- return dx.square().add(dy.square());
- }
- /** Compute the dot-product of the instance and another vector.
- * <p>
- * The implementation uses specific multiplication and addition
- * algorithms to preserve accuracy and reduce cancellation effects.
- * It should be very accurate even for nearly orthogonal vectors.
- * </p>
- * @see MathArrays#linearCombination(double, double, double, double, double, double)
- * @param v second vector
- * @return the dot product this.v
- */
- public T dotProduct(final FieldVector2D<T> v) {
- return x.linearCombination(x, v.getX(), y, v.getY());
- }
- /** Compute the dot-product of the instance and another vector.
- * <p>
- * The implementation uses specific multiplication and addition
- * algorithms to preserve accuracy and reduce cancellation effects.
- * It should be very accurate even for nearly orthogonal vectors.
- * </p>
- * @see MathArrays#linearCombination(double, double, double, double, double, double)
- * @param v second vector
- * @return the dot product this.v
- */
- public T dotProduct(final Vector2D v) {
- return x.linearCombination(v.getX(), x, v.getY(), y);
- }
- /**
- * Compute the cross-product of the instance and the given points.
- * <p>
- * The cross product can be used to determine the location of a point
- * with regard to the line formed by (p1, p2) and is calculated as:
- * \[
- * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
- * \]
- * with \(p3 = (x_3, y_3)\) being this instance.
- * <p>
- * If the result is 0, the points are collinear, i.e. lie on a single straight line L;
- * if it is positive, this point lies to the left, otherwise to the right of the line
- * formed by (p1, p2).
- *
- * @param p1 first point of the line
- * @param p2 second point of the line
- * @return the cross-product
- *
- * @see <a href="http://en.wikipedia.org/wiki/Cross_product">Cross product (Wikipedia)</a>
- */
- public T crossProduct(final FieldVector2D<T> p1, final FieldVector2D<T> p2) {
- final T x1 = p2.getX().subtract(p1.getX());
- final T y1 = getY().subtract(p1.getY());
- final T mx2 = p1.getX().subtract(getX());
- final T y2 = p2.getY().subtract(p1.getY());
- return x1.linearCombination(x1, y1, mx2, y2);
- }
- /**
- * Compute the cross-product of the instance and the given points.
- * <p>
- * The cross product can be used to determine the location of a point
- * with regard to the line formed by (p1, p2) and is calculated as:
- * \[
- * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
- * \]
- * with \(p3 = (x_3, y_3)\) being this instance.
- * <p>
- * If the result is 0, the points are collinear, i.e. lie on a single straight line L;
- * if it is positive, this point lies to the left, otherwise to the right of the line
- * formed by (p1, p2).
- *
- * @param p1 first point of the line
- * @param p2 second point of the line
- * @return the cross-product
- *
- * @see <a href="http://en.wikipedia.org/wiki/Cross_product">Cross product (Wikipedia)</a>
- */
- public T crossProduct(final Vector2D p1, final Vector2D p2) {
- final double x1 = p2.getX() - p1.getX();
- final T y1 = getY().subtract(p1.getY());
- final T x2 = getX().subtract(p1.getX());
- final double y2 = p2.getY() - p1.getY();
- return y1.linearCombination(x1, y1, -y2, x2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final FieldVector2D<T> p1, final FieldVector2D<T> p2) {
- return p1.distance1(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final FieldVector2D<T> p1, final Vector2D p2) {
- return p1.distance1(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final Vector2D p1, final FieldVector2D<T> p2) {
- return p2.distance1(p1);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance(final FieldVector2D<T> p1, final FieldVector2D<T> p2) {
- return p1.distance(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance(final FieldVector2D<T> p1, final Vector2D p2) {
- return p1.distance(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance( final Vector2D p1, final FieldVector2D<T> p2) {
- return p2.distance(p1);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final FieldVector2D<T> p1, final FieldVector2D<T> p2) {
- return p1.distanceInf(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final FieldVector2D<T> p1, final Vector2D p2) {
- return p1.distanceInf(p2);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the distance between p1 and p2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final Vector2D p1, final FieldVector2D<T> p2) {
- return p2.distanceInf(p1);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between p1 and p2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final FieldVector2D<T> p1, final FieldVector2D<T> p2) {
- return p1.distanceSq(p2);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between p1 and p2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final FieldVector2D<T> p1, final Vector2D p2) {
- return p1.distanceSq(p2);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>p1.subtract(p2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param p1 first vector
- * @param p2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between p1 and p2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final Vector2D p1, final FieldVector2D<T> p2) {
- return p2.distanceSq(p1);
- }
- /** Compute the orientation of a triplet of points.
- * @param p first vector of the triplet
- * @param q second vector of the triplet
- * @param r third vector of the triplet
- * @param <T> the type of the field elements
- * @return a positive value if (p, q, r) defines a counterclockwise oriented
- * triangle, a negative value if (p, q, r) defines a clockwise oriented
- * triangle, and 0 if (p, q, r) are collinear or some points are equal
- * @since 1.2
- */
- public static <T extends CalculusFieldElement<T>> T orientation(final FieldVector2D<T> p, final FieldVector2D<T> q, final FieldVector2D<T> r) {
- final T prototype = p.getX();
- final T[] a = MathArrays.buildArray(prototype.getField(), 6);
- a[0] = p.getX();
- a[1] = p.getX().negate();
- a[2] = q.getX();
- a[3] = q.getX().negate();
- a[4] = r.getX();
- a[5] = r.getX().negate();
- final T[] b = MathArrays.buildArray(prototype.getField(), 6);
- b[0] = q.getY();
- b[1] = r.getY();
- b[2] = r.getY();
- b[3] = p.getY();
- b[4] = p.getY();
- b[5] = q.getY();
- return prototype.linearCombination(a, b);
- }
- /** Get a string representation of this vector.
- * @return a string representation of this vector
- */
- @Override
- public String toString() {
- return Vector2DFormat.getVector2DFormat().format(toVector2D());
- }
- /** Get a string representation of this vector.
- * @param format the custom format for components
- * @return a string representation of this vector
- */
- public String toString(final NumberFormat format) {
- return new Vector2DFormat(format).format(toVector2D());
- }
- }