DiskGenerator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.euclidean.twod;
- import java.util.List;
- import org.hipparchus.fraction.BigFraction;
- import org.hipparchus.geometry.enclosing.EnclosingBall;
- import org.hipparchus.geometry.enclosing.SupportBallGenerator;
- import org.hipparchus.util.FastMath;
- /** Class generating an enclosing ball from its support points.
- */
- public class DiskGenerator implements SupportBallGenerator<Euclidean2D, Vector2D> {
- /** Empty constructor.
- * <p>
- * This constructor is not strictly necessary, but it prevents spurious
- * javadoc warnings with JDK 18 and later.
- * </p>
- * @since 3.0
- */
- public DiskGenerator() { // NOPMD - unnecessary constructor added intentionally to make javadoc happy
- // nothing to do
- }
- /** {@inheritDoc} */
- @Override
- public EnclosingBall<Euclidean2D, Vector2D> ballOnSupport(final List<Vector2D> support) {
- if (support.isEmpty()) {
- return new EnclosingBall<>(Vector2D.ZERO, Double.NEGATIVE_INFINITY);
- } else {
- final Vector2D vA = support.get(0);
- if (support.size() < 2) {
- return new EnclosingBall<>(vA, 0, vA);
- } else {
- final Vector2D vB = support.get(1);
- if (support.size() < 3) {
- final Vector2D center = new Vector2D(0.5, vA, 0.5, vB);
- // we could have computed r directly from the vA and vB
- // (it was done this way up to Hipparchus 1.0), but as center
- // is approximated in the computation above, it is better to
- // take the final value of center and compute r from the distances
- // to center of all support points, using a max to ensure all support
- // points belong to the ball
- // see <https://github.com/Hipparchus-Math/hipparchus/issues/20>
- final double r = FastMath.max(Vector2D.distance(vA, center),
- Vector2D.distance(vB, center));
- return new EnclosingBall<>(center, r, vA, vB);
- } else {
- final Vector2D vC = support.get(2);
- // a disk is 2D can be defined as:
- // (1) (x - x_0)^2 + (y - y_0)^2 = r^2
- // which can be written:
- // (2) (x^2 + y^2) - 2 x_0 x - 2 y_0 y + (x_0^2 + y_0^2 - r^2) = 0
- // or simply:
- // (3) (x^2 + y^2) + a x + b y + c = 0
- // with disk center coordinates -a/2, -b/2
- // If the disk exists, a, b and c are a non-zero solution to
- // [ (x^2 + y^2 ) x y 1 ] [ 1 ] [ 0 ]
- // [ (xA^2 + yA^2) xA yA 1 ] [ a ] [ 0 ]
- // [ (xB^2 + yB^2) xB yB 1 ] * [ b ] = [ 0 ]
- // [ (xC^2 + yC^2) xC yC 1 ] [ c ] [ 0 ]
- // So the determinant of the matrix is zero. Computing this determinant
- // by expanding it using the minors m_ij of first row leads to
- // (4) m_11 (x^2 + y^2) - m_12 x + m_13 y - m_14 = 0
- // So by identifying equations (2) and (4) we get the coordinates
- // of center as:
- // x_0 = +m_12 / (2 m_11)
- // y_0 = -m_13 / (2 m_11)
- // Note that the minors m_11, m_12 and m_13 all have the last column
- // filled with 1.0, hence simplifying the computation
- final BigFraction[] c2 = {
- new BigFraction(vA.getX()), new BigFraction(vB.getX()), new BigFraction(vC.getX())
- };
- final BigFraction[] c3 = {
- new BigFraction(vA.getY()), new BigFraction(vB.getY()), new BigFraction(vC.getY())
- };
- final BigFraction[] c1 = {
- c2[0].multiply(c2[0]).add(c3[0].multiply(c3[0])),
- c2[1].multiply(c2[1]).add(c3[1].multiply(c3[1])),
- c2[2].multiply(c2[2]).add(c3[2].multiply(c3[2]))
- };
- final BigFraction twoM11 = minor(c2, c3).multiply(2);
- final BigFraction m12 = minor(c1, c3);
- final BigFraction m13 = minor(c1, c2);
- final Vector2D center = new Vector2D( m12.divide(twoM11).doubleValue(),
- -m13.divide(twoM11).doubleValue());
- // we could have computed r directly from the minors above
- // (it was done this way up to Hipparchus 1.0), but as center
- // is approximated in the computation above, it is better to
- // take the final value of center and compute r from the distances
- // to center of all support points, using a max to ensure all support
- // points belong to the ball
- // see <https://github.com/Hipparchus-Math/hipparchus/issues/20>
- final double r = FastMath.max(Vector2D.distance(vA, center),
- FastMath.max(Vector2D.distance(vB, center),
- Vector2D.distance(vC, center)));
- return new EnclosingBall<>(center, r, vA, vB, vC);
- }
- }
- }
- }
- /** Compute a dimension 3 minor, when 3<sup>d</sup> column is known to be filled with 1.0.
- * @param c1 first column
- * @param c2 second column
- * @return value of the minor computed has an exact fraction
- */
- private BigFraction minor(final BigFraction[] c1, final BigFraction[] c2) {
- return c2[0].multiply(c1[2].subtract(c1[1])).
- add(c2[1].multiply(c1[0].subtract(c1[2]))).
- add(c2[2].multiply(c1[1].subtract(c1[0])));
- }
- }