MonotoneChain.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This is not the original file distributed by the Apache Software Foundation
* It has been modified by the Hipparchus project
*/
package org.hipparchus.geometry.euclidean.twod.hull;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import org.hipparchus.geometry.euclidean.twod.Line;
import org.hipparchus.geometry.euclidean.twod.Vector2D;
import org.hipparchus.util.FastMath;
import org.hipparchus.util.Precision;
/**
* Implements Andrew's monotone chain method to generate the convex hull of a finite set of
* points in the two-dimensional euclidean space.
* <p>
* The runtime complexity is O(n log n), with n being the number of input points. If the
* point set is already sorted (by x-coordinate), the runtime complexity is O(n).
* <p>
* The implementation is not sensitive to collinear points on the hull. The parameter
* {@code includeCollinearPoints} allows to control the behavior with regard to collinear points.
* If {@code true}, all points on the boundary of the hull will be added to the hull vertices,
* otherwise only the extreme points will be present. By default, collinear points are not added
* as hull vertices.
* <p>
* The {@code tolerance} parameter (default: 1e-10) is used as epsilon criteria to determine
* identical and collinear points.
*
* @see <a href="http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain">
* Andrew's monotone chain algorithm (Wikibooks)</a>
*/
public class MonotoneChain extends AbstractConvexHullGenerator2D {
/**
* Create a new MonotoneChain instance.
*/
public MonotoneChain() {
this(false);
}
/**
* Create a new MonotoneChain instance.
* @param includeCollinearPoints whether collinear points shall be added as hull vertices
*/
public MonotoneChain(final boolean includeCollinearPoints) {
super(includeCollinearPoints);
}
/**
* Create a new MonotoneChain instance.
* @param includeCollinearPoints whether collinear points shall be added as hull vertices
* @param tolerance tolerance below which points are considered identical
*/
public MonotoneChain(final boolean includeCollinearPoints, final double tolerance) {
super(includeCollinearPoints, tolerance);
}
/** {@inheritDoc} */
@Override
public Collection<Vector2D> findHullVertices(final Collection<Vector2D> points) {
final List<Vector2D> pointsSortedByXAxis = new ArrayList<>(points);
// sort the points in increasing order on the x-axis
Collections.sort(pointsSortedByXAxis, new Comparator<Vector2D>() {
/** {@inheritDoc} */
@Override
public int compare(final Vector2D o1, final Vector2D o2) {
final double tolerance = getTolerance();
// need to take the tolerance value into account, otherwise collinear points
// will not be handled correctly when building the upper/lower hull
final int diff = Precision.compareTo(o1.getX(), o2.getX(), tolerance);
if (diff == 0) {
return Precision.compareTo(o1.getY(), o2.getY(), tolerance);
} else {
return diff;
}
}
});
// build lower hull
final List<Vector2D> lowerHull = new ArrayList<>();
for (Vector2D p : pointsSortedByXAxis) {
updateHull(p, lowerHull);
}
// build upper hull
final List<Vector2D> upperHull = new ArrayList<>();
for (int idx = pointsSortedByXAxis.size() - 1; idx >= 0; idx--) {
final Vector2D p = pointsSortedByXAxis.get(idx);
updateHull(p, upperHull);
}
// concatenate the lower and upper hulls
// the last point of each list is omitted as it is repeated at the beginning of the other list
final List<Vector2D> hullVertices = new ArrayList<>(lowerHull.size() + upperHull.size() - 2);
for (int idx = 0; idx < lowerHull.size() - 1; idx++) {
hullVertices.add(lowerHull.get(idx));
}
for (int idx = 0; idx < upperHull.size() - 1; idx++) {
hullVertices.add(upperHull.get(idx));
}
// special case: if the lower and upper hull may contain only 1 point if all are identical
if (hullVertices.isEmpty() && ! lowerHull.isEmpty()) {
hullVertices.add(lowerHull.get(0));
}
return hullVertices;
}
/**
* Update the partial hull with the current point.
*
* @param point the current point
* @param hull the partial hull
*/
private void updateHull(final Vector2D point, final List<Vector2D> hull) {
final double tolerance = getTolerance();
if (hull.size() == 1) {
// ensure that we do not add an identical point
final Vector2D p1 = hull.get(0);
if (p1.distance(point) < tolerance) {
return;
}
}
while (hull.size() >= 2) {
final int size = hull.size();
final Vector2D p1 = hull.get(size - 2);
final Vector2D p2 = hull.get(size - 1);
final double offset = new Line(p1, p2, tolerance).getOffset(point);
if (FastMath.abs(offset) < tolerance) {
// the point is collinear to the line (p1, p2)
final double distanceToCurrent = p1.distance(point);
if (distanceToCurrent < tolerance || p2.distance(point) < tolerance) {
// the point is assumed to be identical to either p1 or p2
return;
}
final double distanceToLast = p1.distance(p2);
if (isIncludeCollinearPoints()) {
final int index = distanceToCurrent < distanceToLast ? size - 1 : size;
hull.add(index, point);
} else {
if (distanceToCurrent > distanceToLast) {
hull.remove(size - 1);
hull.add(point);
}
}
return;
} else if (offset > 0) {
hull.remove(size - 1);
} else {
break;
}
}
hull.add(point);
}
}