SphericalCoordinates.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * This is not the original file distributed by the Apache Software Foundation
 * It has been modified by the Hipparchus project
 */
package org.hipparchus.geometry.euclidean.threed;


import java.io.Serializable;

import org.hipparchus.util.FastMath;
import org.hipparchus.util.SinCos;

/** This class provides conversions related to <a
 * href="http://mathworld.wolfram.com/SphericalCoordinates.html">spherical coordinates</a>.
 * <p>
 * The conventions used here are the mathematical ones, i.e. spherical coordinates are
 * related to Cartesian coordinates as follows:
 * </p>
 * <ul>
 *   <li>x = r cos(&theta;) sin(&Phi;)</li>
 *   <li>y = r sin(&theta;) sin(&Phi;)</li>
 *   <li>z = r cos(&Phi;)</li>
 * </ul>
 * <ul>
 *   <li>r       = &radic;(x<sup>2</sup>+y<sup>2</sup>+z<sup>2</sup>)</li>
 *   <li>&theta; = atan2(y, x)</li>
 *   <li>&Phi;   = acos(z/r)</li>
 * </ul>
 * <p>
 * r is the radius, &theta; is the azimuthal angle in the x-y plane and &Phi; is the polar
 * (co-latitude) angle. These conventions are <em>different</em> from the conventions used
 * in physics (and in particular in spherical harmonics) where the meanings of &theta; and
 * &Phi; are reversed.
 * </p>
 * <p>
 * This class provides conversion of coordinates and also of gradient and Hessian
 * between spherical and Cartesian coordinates.
 * </p>
 */
public class SphericalCoordinates implements Serializable {

    /** Serializable UID. */
    private static final long serialVersionUID = 20130206L;

    /** Cartesian coordinates. */
    private final Vector3D v;

    /** Radius. */
    private final double r;

    /** Azimuthal angle in the x-y plane &theta;. */
    private final double theta;

    /** Polar angle (co-latitude) &Phi;. */
    private final double phi;

    /** Jacobian of (r, &theta; &Phi;). */
    private double[][] jacobian;

    /** Hessian of radius. */
    private double[][] rHessian;

    /** Hessian of azimuthal angle in the x-y plane &theta;. */
    private double[][] thetaHessian;

    /** Hessian of polar (co-latitude) angle &Phi;. */
    private double[][] phiHessian;

    /** Build a spherical coordinates transformer from Cartesian coordinates.
     * @param v Cartesian coordinates
     */
    public SphericalCoordinates(final Vector3D v) {

        // Cartesian coordinates
        this.v = v;

        // remaining spherical coordinates
        this.r     = v.getNorm();
        this.theta = v.getAlpha();
        this.phi   = FastMath.acos(v.getZ() / r);

    }

    /** Build a spherical coordinates transformer from spherical coordinates.
     * @param r radius
     * @param theta azimuthal angle in x-y plane
     * @param phi polar (co-latitude) angle
     */
    public SphericalCoordinates(final double r, final double theta, final double phi) {

        final SinCos sinCosTheta = FastMath.sinCos(theta);
        final SinCos sinCosPhi   = FastMath.sinCos(phi);

        // spherical coordinates
        this.r     = r;
        this.theta = theta;
        this.phi   = phi;

        // Cartesian coordinates
        this.v  = new Vector3D(r * sinCosTheta.cos() * sinCosPhi.sin(),
                               r * sinCosTheta.sin() * sinCosPhi.sin(),
                               r * sinCosPhi.cos());

    }

    /** Get the Cartesian coordinates.
     * @return Cartesian coordinates
     */
    public Vector3D getCartesian() {
        return v;
    }

    /** Get the radius.
     * @return radius r
     * @see #getTheta()
     * @see #getPhi()
     */
    public double getR() {
        return r;
    }

    /** Get the azimuthal angle in x-y plane.
     * @return azimuthal angle in x-y plane &theta;
     * @see #getR()
     * @see #getPhi()
     */
    public double getTheta() {
        return theta;
    }

    /** Get the polar (co-latitude) angle.
     * @return polar (co-latitude) angle &Phi;
     * @see #getR()
     * @see #getTheta()
     */
    public double getPhi() {
        return phi;
    }

    /** Convert a gradient with respect to spherical coordinates into a gradient
     * with respect to Cartesian coordinates.
     * @param sGradient gradient with respect to spherical coordinates
     * {df/dr, df/d&theta;, df/d&Phi;}
     * @return gradient with respect to Cartesian coordinates
     * {df/dx, df/dy, df/dz}
     */
    public double[] toCartesianGradient(final double[] sGradient) {

        // lazy evaluation of Jacobian
        computeJacobian();

        // compose derivatives as gradient^T . J
        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
        return new double[] {
            sGradient[0] * jacobian[0][0] + sGradient[1] * jacobian[1][0] + sGradient[2] * jacobian[2][0],
            sGradient[0] * jacobian[0][1] + sGradient[1] * jacobian[1][1] + sGradient[2] * jacobian[2][1],
            sGradient[0] * jacobian[0][2]                                 + sGradient[2] * jacobian[2][2]
        };

    }

    /** Convert a Hessian with respect to spherical coordinates into a Hessian
     * with respect to Cartesian coordinates.
     * <p>
     * As Hessian are always symmetric, we use only the lower left part of the provided
     * spherical Hessian, so the upper part may not be initialized. However, we still
     * do fill up the complete array we create, with guaranteed symmetry.
     * </p>
     * @param sHessian Hessian with respect to spherical coordinates
     * {{d<sup>2</sup>f/dr<sup>2</sup>, d<sup>2</sup>f/drd&theta;, d<sup>2</sup>f/drd&Phi;},
     *  {d<sup>2</sup>f/drd&theta;, d<sup>2</sup>f/d&theta;<sup>2</sup>, d<sup>2</sup>f/d&theta;d&Phi;},
     *  {d<sup>2</sup>f/drd&Phi;, d<sup>2</sup>f/d&theta;d&Phi;, d<sup>2</sup>f/d&Phi;<sup>2</sup>}
     * @param sGradient gradient with respect to spherical coordinates
     * {df/dr, df/d&theta;, df/d&Phi;}
     * @return Hessian with respect to Cartesian coordinates
     * {{d<sup>2</sup>f/dx<sup>2</sup>, d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dxdz},
     *  {d<sup>2</sup>f/dxdy, d<sup>2</sup>f/dy<sup>2</sup>, d<sup>2</sup>f/dydz},
     *  {d<sup>2</sup>f/dxdz, d<sup>2</sup>f/dydz, d<sup>2</sup>f/dz<sup>2</sup>}}
     */
    public double[][] toCartesianHessian(final double[][] sHessian, final double[] sGradient) {

        computeJacobian();
        computeHessians();

        // compose derivative as J^T . H_f . J + df/dr H_r + df/dtheta H_theta + df/dphi H_phi
        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
        // and H_theta is only a 2x2 matrix as it does not depend on z
        final double[][] hj = new double[3][3];
        final double[][] cHessian = new double[3][3];

        // compute H_f . J
        // beware we use ONLY the lower-left part of sHessian
        hj[0][0] = sHessian[0][0] * jacobian[0][0] + sHessian[1][0] * jacobian[1][0] + sHessian[2][0] * jacobian[2][0];
        hj[0][1] = sHessian[0][0] * jacobian[0][1] + sHessian[1][0] * jacobian[1][1] + sHessian[2][0] * jacobian[2][1];
        hj[0][2] = sHessian[0][0] * jacobian[0][2]                                   + sHessian[2][0] * jacobian[2][2];
        hj[1][0] = sHessian[1][0] * jacobian[0][0] + sHessian[1][1] * jacobian[1][0] + sHessian[2][1] * jacobian[2][0];
        hj[1][1] = sHessian[1][0] * jacobian[0][1] + sHessian[1][1] * jacobian[1][1] + sHessian[2][1] * jacobian[2][1];
        // don't compute hj[1][2] as it is not used below
        hj[2][0] = sHessian[2][0] * jacobian[0][0] + sHessian[2][1] * jacobian[1][0] + sHessian[2][2] * jacobian[2][0];
        hj[2][1] = sHessian[2][0] * jacobian[0][1] + sHessian[2][1] * jacobian[1][1] + sHessian[2][2] * jacobian[2][1];
        hj[2][2] = sHessian[2][0] * jacobian[0][2]                                   + sHessian[2][2] * jacobian[2][2];

        // compute lower-left part of J^T . H_f . J
        cHessian[0][0] = jacobian[0][0] * hj[0][0] + jacobian[1][0] * hj[1][0] + jacobian[2][0] * hj[2][0];
        cHessian[1][0] = jacobian[0][1] * hj[0][0] + jacobian[1][1] * hj[1][0] + jacobian[2][1] * hj[2][0];
        cHessian[2][0] = jacobian[0][2] * hj[0][0]                             + jacobian[2][2] * hj[2][0];
        cHessian[1][1] = jacobian[0][1] * hj[0][1] + jacobian[1][1] * hj[1][1] + jacobian[2][1] * hj[2][1];
        cHessian[2][1] = jacobian[0][2] * hj[0][1]                             + jacobian[2][2] * hj[2][1];
        cHessian[2][2] = jacobian[0][2] * hj[0][2]                             + jacobian[2][2] * hj[2][2];

        // add gradient contribution
        cHessian[0][0] += sGradient[0] * rHessian[0][0] + sGradient[1] * thetaHessian[0][0] + sGradient[2] * phiHessian[0][0];
        cHessian[1][0] += sGradient[0] * rHessian[1][0] + sGradient[1] * thetaHessian[1][0] + sGradient[2] * phiHessian[1][0];
        cHessian[2][0] += sGradient[0] * rHessian[2][0]                                     + sGradient[2] * phiHessian[2][0];
        cHessian[1][1] += sGradient[0] * rHessian[1][1] + sGradient[1] * thetaHessian[1][1] + sGradient[2] * phiHessian[1][1];
        cHessian[2][1] += sGradient[0] * rHessian[2][1]                                     + sGradient[2] * phiHessian[2][1];
        cHessian[2][2] += sGradient[0] * rHessian[2][2]                                     + sGradient[2] * phiHessian[2][2];

        // ensure symmetry
        cHessian[0][1] = cHessian[1][0];
        cHessian[0][2] = cHessian[2][0];
        cHessian[1][2] = cHessian[2][1];

        return cHessian;

    }

    /** Lazy evaluation of (r, &theta;, &phi;) Jacobian.
     */
    private void computeJacobian() {
        if (jacobian == null) {

            // intermediate variables
            final double x    = v.getX();
            final double y    = v.getY();
            final double z    = v.getZ();
            final double rho2 = x * x + y * y;
            final double rho  = FastMath.sqrt(rho2);
            final double r2   = rho2 + z * z;

            jacobian = new double[3][3];

            // row representing the gradient of r
            jacobian[0][0] = x / r;
            jacobian[0][1] = y / r;
            jacobian[0][2] = z / r;

            // row representing the gradient of theta
            jacobian[1][0] = -y / rho2;
            jacobian[1][1] =  x / rho2;
            // jacobian[1][2] is already set to 0 at allocation time

            // row representing the gradient of phi
            jacobian[2][0] = x * z / (rho * r2);
            jacobian[2][1] = y * z / (rho * r2);
            jacobian[2][2] = -rho / r2;

        }
    }

    /** Lazy evaluation of Hessians.
     */
    private void computeHessians() {

        if (rHessian == null) {

            // intermediate variables
            final double x      = v.getX();
            final double y      = v.getY();
            final double z      = v.getZ();
            final double x2     = x * x;
            final double y2     = y * y;
            final double z2     = z * z;
            final double rho2   = x2 + y2;
            final double rho    = FastMath.sqrt(rho2);
            final double r2     = rho2 + z2;
            final double xOr    = x / r;
            final double yOr    = y / r;
            final double zOr    = z / r;
            final double xOrho2 = x / rho2;
            final double yOrho2 = y / rho2;
            final double xOr3   = xOr / r2;
            final double yOr3   = yOr / r2;
            final double zOr3   = zOr / r2;

            // lower-left part of Hessian of r
            rHessian = new double[3][3];
            rHessian[0][0] = y * yOr3 + z * zOr3;
            rHessian[1][0] = -x * yOr3;
            rHessian[2][0] = -z * xOr3;
            rHessian[1][1] = x * xOr3 + z * zOr3;
            rHessian[2][1] = -y * zOr3;
            rHessian[2][2] = x * xOr3 + y * yOr3;

            // upper-right part is symmetric
            rHessian[0][1] = rHessian[1][0];
            rHessian[0][2] = rHessian[2][0];
            rHessian[1][2] = rHessian[2][1];

            // lower-left part of Hessian of azimuthal angle theta
            thetaHessian = new double[2][2];
            thetaHessian[0][0] = 2 * xOrho2 * yOrho2;
            thetaHessian[1][0] = yOrho2 * yOrho2 - xOrho2 * xOrho2;
            thetaHessian[1][1] = -2 * xOrho2 * yOrho2;

            // upper-right part is symmetric
            thetaHessian[0][1] = thetaHessian[1][0];

            // lower-left part of Hessian of polar (co-latitude) angle phi
            final double rhor2       = rho * r2;
            final double rho2r2      = rho * rhor2;
            final double rhor4       = rhor2 * r2;
            final double rho3r4      = rhor4 * rho2;
            final double r2P2rho2    = 3 * rho2 + z2;
            phiHessian = new double[3][3];
            phiHessian[0][0] = z * (rho2r2 - x2 * r2P2rho2) / rho3r4;
            phiHessian[1][0] = -x * y * z * r2P2rho2 / rho3r4;
            phiHessian[2][0] = x * (rho2 - z2) / rhor4;
            phiHessian[1][1] = z * (rho2r2 - y2 * r2P2rho2) / rho3r4;
            phiHessian[2][1] = y * (rho2 - z2) / rhor4;
            phiHessian[2][2] = 2 * rho * zOr3 / r;

            // upper-right part is symmetric
            phiHessian[0][1] = phiHessian[1][0];
            phiHessian[0][2] = phiHessian[2][0];
            phiHessian[1][2] = phiHessian[2][1];

        }

    }

    /**
     * Replace the instance with a data transfer object for serialization.
     * @return data transfer object that will be serialized
     */
    private Object writeReplace() {
        return new DataTransferObject(v.getX(), v.getY(), v.getZ());
    }

    /** Internal class used only for serialization. */
    private static class DataTransferObject implements Serializable {

        /** Serializable UID. */
        private static final long serialVersionUID = 20130206L;

        /** Abscissa.
         * @serial
         */
        private final double x;

        /** Ordinate.
         * @serial
         */
        private final double y;

        /** Height.
         * @serial
         */
        private final double z;

        /** Simple constructor.
         * @param x abscissa
         * @param y ordinate
         * @param z height
         */
        DataTransferObject(final double x, final double y, final double z) {
            this.x = x;
            this.y = y;
            this.z = z;
        }

        /** Replace the deserialized data transfer object with a {@link SphericalCoordinates}.
         * @return replacement {@link SphericalCoordinates}
         */
        private Object readResolve() {
            return new SphericalCoordinates(new Vector3D(x, y, z));
        }

    }

}