Rotation.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.euclidean.threed;
- import java.io.Serializable;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.LocalizedGeometryFormats;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.MathArrays;
- import org.hipparchus.util.SinCos;
- /**
- * This class implements rotations in a three-dimensional space.
- *
- * <p>Rotations can be represented by several different mathematical
- * entities (matrices, axe and angle, Cardan or Euler angles,
- * quaternions). This class presents an higher level abstraction, more
- * user-oriented and hiding this implementation details. Well, for the
- * curious, we use quaternions for the internal representation. The
- * user can build a rotation from any of these representations, and
- * any of these representations can be retrieved from a
- * <code>Rotation</code> instance (see the various constructors and
- * getters). In addition, a rotation can also be built implicitly
- * from a set of vectors and their image.</p>
- * <p>This implies that this class can be used to convert from one
- * representation to another one. For example, converting a rotation
- * matrix into a set of Cardan angles from can be done using the
- * following single line of code:</p>
- * <pre>
- * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
- * </pre>
- * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
- * underlying representation. Once it has been built, and regardless of its
- * internal representation, a rotation is an <em>operator</em> which basically
- * transforms three dimensional {@link Vector3D vectors} into other three
- * dimensional {@link Vector3D vectors}. Depending on the application, the
- * meaning of these vectors may vary and the semantics of the rotation also.</p>
- * <p>For example in an spacecraft attitude simulation tool, users will often
- * consider the vectors are fixed (say the Earth direction for example) and the
- * frames change. The rotation transforms the coordinates of the vector in inertial
- * frame into the coordinates of the same vector in satellite frame. In this
- * case, the rotation implicitly defines the relation between the two frames.</p>
- * <p>Another example could be a telescope control application, where the rotation
- * would transform the sighting direction at rest into the desired observing
- * direction when the telescope is pointed towards an object of interest. In this
- * case the rotation transforms the direction at rest in a topocentric frame
- * into the sighting direction in the same topocentric frame. This implies in this
- * case the frame is fixed and the vector moves.</p>
- * <p>In many case, both approaches will be combined. In our telescope example,
- * we will probably also need to transform the observing direction in the topocentric
- * frame into the observing direction in inertial frame taking into account the observatory
- * location and the Earth rotation, which would essentially be an application of the
- * first approach.</p>
- *
- * <p>These examples show that a rotation is what the user wants it to be. This
- * class does not push the user towards one specific definition and hence does not
- * provide methods like <code>projectVectorIntoDestinationFrame</code> or
- * <code>computeTransformedDirection</code>. It provides simpler and more generic
- * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
- * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
- *
- * <p>Since a rotation is basically a vectorial operator, several rotations can be
- * composed together and the composite operation <code>r = r<sub>1</sub> o
- * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
- * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
- * we can consider that in addition to vectors, a rotation can be applied to other
- * rotations as well (or to itself). With our previous notations, we would say we
- * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
- * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
- * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
- * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
- *
- * <p>Rotations are guaranteed to be immutable objects.</p>
- *
- * @see Vector3D
- * @see RotationOrder
- */
- public class Rotation implements Serializable {
- /** Identity rotation. */
- public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
- /** Serializable version identifier */
- private static final long serialVersionUID = -2153622329907944313L;
- /** Scalar coordinate of the quaternion. */
- private final double q0;
- /** First coordinate of the vectorial part of the quaternion. */
- private final double q1;
- /** Second coordinate of the vectorial part of the quaternion. */
- private final double q2;
- /** Third coordinate of the vectorial part of the quaternion. */
- private final double q3;
- /** Build a rotation from the quaternion coordinates.
- * <p>A rotation can be built from a <em>normalized</em> quaternion,
- * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
- * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
- * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
- * the constructor can normalize it in a preprocessing step.</p>
- * <p>Note that some conventions put the scalar part of the quaternion
- * as the 4<sup>th</sup> component and the vector part as the first three
- * components. This is <em>not</em> our convention. We put the scalar part
- * as the first component.</p>
- * @param q0 scalar part of the quaternion
- * @param q1 first coordinate of the vectorial part of the quaternion
- * @param q2 second coordinate of the vectorial part of the quaternion
- * @param q3 third coordinate of the vectorial part of the quaternion
- * @param needsNormalization if true, the coordinates are considered
- * not to be normalized, a normalization preprocessing step is performed
- * before using them
- */
- public Rotation(double q0, double q1, double q2, double q3,
- boolean needsNormalization) {
- if (needsNormalization) {
- // normalization preprocessing
- double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
- q0 *= inv;
- q1 *= inv;
- q2 *= inv;
- q3 *= inv;
- }
- this.q0 = q0;
- this.q1 = q1;
- this.q2 = q2;
- this.q3 = q3;
- }
- /** Build a rotation from an axis and an angle.
- * @param axis axis around which to rotate
- * @param angle rotation angle
- * @param convention convention to use for the semantics of the angle
- * @exception MathIllegalArgumentException if the axis norm is zero
- */
- public Rotation(final Vector3D axis, final double angle, final RotationConvention convention)
- throws MathIllegalArgumentException {
- double norm = axis.getNorm();
- if (norm == 0) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.ZERO_NORM_FOR_ROTATION_AXIS);
- }
- double halfAngle = convention == RotationConvention.VECTOR_OPERATOR ? -0.5 * angle : 0.5 * angle;
- SinCos sinCos = FastMath.sinCos(halfAngle);
- double coeff = sinCos.sin() / norm;
- q0 = sinCos.cos();
- q1 = coeff * axis.getX();
- q2 = coeff * axis.getY();
- q3 = coeff * axis.getZ();
- }
- /** Build a rotation from a 3X3 matrix.
- * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
- * (which are matrices for which m.m<sup>T</sup> = I) with real
- * coefficients. The module of the determinant of unit matrices is
- * 1, among the orthogonal 3X3 matrices, only the ones having a
- * positive determinant (+1) are rotation matrices.</p>
- * <p>When a rotation is defined by a matrix with truncated values
- * (typically when it is extracted from a technical sheet where only
- * four to five significant digits are available), the matrix is not
- * orthogonal anymore. This constructor handles this case
- * transparently by using a copy of the given matrix and applying a
- * correction to the copy in order to perfect its orthogonality. If
- * the Frobenius norm of the correction needed is above the given
- * threshold, then the matrix is considered to be too far from a
- * true rotation matrix and an exception is thrown.</p>
- * @param m rotation matrix
- * @param threshold convergence threshold for the iterative
- * orthogonality correction (convergence is reached when the
- * difference between two steps of the Frobenius norm of the
- * correction is below this threshold)
- * @exception MathIllegalArgumentException if the matrix is not a 3X3
- * matrix, or if it cannot be transformed into an orthogonal matrix
- * with the given threshold, or if the determinant of the resulting
- * orthogonal matrix is negative
- */
- public Rotation(double[][] m, double threshold)
- throws MathIllegalArgumentException {
- // dimension check
- if ((m.length != 3) || (m[0].length != 3) ||
- (m[1].length != 3) || (m[2].length != 3)) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.ROTATION_MATRIX_DIMENSIONS,
- m.length, m[0].length);
- }
- // compute a "close" orthogonal matrix
- double[][] ort = orthogonalizeMatrix(m, threshold);
- // check the sign of the determinant
- double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
- ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
- ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
- if (det < 0.0) {
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
- det);
- }
- double[] quat = mat2quat(ort);
- q0 = quat[0];
- q1 = quat[1];
- q2 = quat[2];
- q3 = quat[3];
- }
- /** Build the rotation that transforms a pair of vectors into another pair.
- * <p>Except for possible scale factors, if the instance were applied to
- * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
- * (v<sub>1</sub>, v<sub>2</sub>).</p>
- * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
- * not the same as the angular separation between v<sub>1</sub> and
- * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
- * v<sub>2</sub>, the corrected vector will be in the (±v<sub>1</sub>,
- * +v<sub>2</sub>) half-plane.</p>
- * @param u1 first vector of the origin pair
- * @param u2 second vector of the origin pair
- * @param v1 desired image of u1 by the rotation
- * @param v2 desired image of u2 by the rotation
- * @exception MathRuntimeException if the norm of one of the vectors is zero,
- * or if one of the pair is degenerated (i.e. the vectors of the pair are collinear)
- */
- public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2)
- throws MathRuntimeException {
- // build orthonormalized base from u1, u2
- // this fails when vectors are null or collinear, which is forbidden to define a rotation
- final Vector3D u3 = u1.crossProduct(u2).normalize();
- u2 = u3.crossProduct(u1).normalize();
- u1 = u1.normalize();
- // build an orthonormalized base from v1, v2
- // this fails when vectors are null or collinear, which is forbidden to define a rotation
- final Vector3D v3 = v1.crossProduct(v2).normalize();
- v2 = v3.crossProduct(v1).normalize();
- v1 = v1.normalize();
- // buid a matrix transforming the first base into the second one
- final double[][] m = {
- {
- MathArrays.linearCombination(u1.getX(), v1.getX(), u2.getX(), v2.getX(), u3.getX(), v3.getX()),
- MathArrays.linearCombination(u1.getY(), v1.getX(), u2.getY(), v2.getX(), u3.getY(), v3.getX()),
- MathArrays.linearCombination(u1.getZ(), v1.getX(), u2.getZ(), v2.getX(), u3.getZ(), v3.getX())
- },
- {
- MathArrays.linearCombination(u1.getX(), v1.getY(), u2.getX(), v2.getY(), u3.getX(), v3.getY()),
- MathArrays.linearCombination(u1.getY(), v1.getY(), u2.getY(), v2.getY(), u3.getY(), v3.getY()),
- MathArrays.linearCombination(u1.getZ(), v1.getY(), u2.getZ(), v2.getY(), u3.getZ(), v3.getY())
- },
- {
- MathArrays.linearCombination(u1.getX(), v1.getZ(), u2.getX(), v2.getZ(), u3.getX(), v3.getZ()),
- MathArrays.linearCombination(u1.getY(), v1.getZ(), u2.getY(), v2.getZ(), u3.getY(), v3.getZ()),
- MathArrays.linearCombination(u1.getZ(), v1.getZ(), u2.getZ(), v2.getZ(), u3.getZ(), v3.getZ())
- }
- };
- double[] quat = mat2quat(m);
- q0 = quat[0];
- q1 = quat[1];
- q2 = quat[2];
- q3 = quat[3];
- }
- /** Build one of the rotations that transform one vector into another one.
- * <p>Except for a possible scale factor, if the instance were
- * applied to the vector u it will produce the vector v. There is an
- * infinite number of such rotations, this constructor choose the
- * one with the smallest associated angle (i.e. the one whose axis
- * is orthogonal to the (u, v) plane). If u and v are collinear, an
- * arbitrary rotation axis is chosen.</p>
- * @param u origin vector
- * @param v desired image of u by the rotation
- * @exception MathRuntimeException if the norm of one of the vectors is zero
- */
- public Rotation(Vector3D u, Vector3D v) throws MathRuntimeException {
- double normProduct = u.getNorm() * v.getNorm();
- if (normProduct == 0) {
- throw new MathRuntimeException(LocalizedGeometryFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
- }
- double dot = u.dotProduct(v);
- if (dot < ((2.0e-15 - 1.0) * normProduct)) {
- // special case u = -v: we select a PI angle rotation around
- // an arbitrary vector orthogonal to u
- Vector3D w = u.orthogonal();
- q0 = 0.0;
- q1 = -w.getX();
- q2 = -w.getY();
- q3 = -w.getZ();
- } else {
- // general case: (u, v) defines a plane, we select
- // the shortest possible rotation: axis orthogonal to this plane
- q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
- double coeff = 1.0 / (2.0 * q0 * normProduct);
- Vector3D q = v.crossProduct(u);
- q1 = coeff * q.getX();
- q2 = coeff * q.getY();
- q3 = coeff * q.getZ();
- }
- }
- /** Build a rotation from three Cardan or Euler elementary rotations.
- * <p>Cardan rotations are three successive rotations around the
- * canonical axes X, Y and Z, each axis being used once. There are
- * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
- * rotations are three successive rotations around the canonical
- * axes X, Y and Z, the first and last rotations being around the
- * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
- * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
- * <p>Beware that many people routinely use the term Euler angles even
- * for what really are Cardan angles (this confusion is especially
- * widespread in the aerospace business where Roll, Pitch and Yaw angles
- * are often wrongly tagged as Euler angles).</p>
- * @param order order of rotations to compose, from left to right
- * (i.e. we will use {@code r1.compose(r2.compose(r3, convention), convention)})
- * @param convention convention to use for the semantics of the angle
- * @param alpha1 angle of the first elementary rotation
- * @param alpha2 angle of the second elementary rotation
- * @param alpha3 angle of the third elementary rotation
- */
- public Rotation(RotationOrder order, RotationConvention convention,
- double alpha1, double alpha2, double alpha3) {
- Rotation r1 = new Rotation(order.getA1(), alpha1, convention);
- Rotation r2 = new Rotation(order.getA2(), alpha2, convention);
- Rotation r3 = new Rotation(order.getA3(), alpha3, convention);
- Rotation composed = r1.compose(r2.compose(r3, convention), convention);
- q0 = composed.q0;
- q1 = composed.q1;
- q2 = composed.q2;
- q3 = composed.q3;
- }
- /** Convert an orthogonal rotation matrix to a quaternion.
- * @param ort orthogonal rotation matrix
- * @return quaternion corresponding to the matrix
- */
- private static double[] mat2quat(final double[][] ort) {
- final double[] quat = new double[4];
- // There are different ways to compute the quaternions elements
- // from the matrix. They all involve computing one element from
- // the diagonal of the matrix, and computing the three other ones
- // using a formula involving a division by the first element,
- // which unfortunately can be zero. Since the norm of the
- // quaternion is 1, we know at least one element has an absolute
- // value greater or equal to 0.5, so it is always possible to
- // select the right formula and avoid division by zero and even
- // numerical inaccuracy. Checking the elements in turn and using
- // the first one greater than 0.45 is safe (this leads to a simple
- // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
- double s = ort[0][0] + ort[1][1] + ort[2][2];
- if (s > -0.19) {
- // compute q0 and deduce q1, q2 and q3
- quat[0] = 0.5 * FastMath.sqrt(s + 1.0);
- double inv = 0.25 / quat[0];
- quat[1] = inv * (ort[1][2] - ort[2][1]);
- quat[2] = inv * (ort[2][0] - ort[0][2]);
- quat[3] = inv * (ort[0][1] - ort[1][0]);
- } else {
- s = ort[0][0] - ort[1][1] - ort[2][2];
- if (s > -0.19) {
- // compute q1 and deduce q0, q2 and q3
- quat[1] = 0.5 * FastMath.sqrt(s + 1.0);
- double inv = 0.25 / quat[1];
- quat[0] = inv * (ort[1][2] - ort[2][1]);
- quat[2] = inv * (ort[0][1] + ort[1][0]);
- quat[3] = inv * (ort[0][2] + ort[2][0]);
- } else {
- s = ort[1][1] - ort[0][0] - ort[2][2];
- if (s > -0.19) {
- // compute q2 and deduce q0, q1 and q3
- quat[2] = 0.5 * FastMath.sqrt(s + 1.0);
- double inv = 0.25 / quat[2];
- quat[0] = inv * (ort[2][0] - ort[0][2]);
- quat[1] = inv * (ort[0][1] + ort[1][0]);
- quat[3] = inv * (ort[2][1] + ort[1][2]);
- } else {
- // compute q3 and deduce q0, q1 and q2
- s = ort[2][2] - ort[0][0] - ort[1][1];
- quat[3] = 0.5 * FastMath.sqrt(s + 1.0);
- double inv = 0.25 / quat[3];
- quat[0] = inv * (ort[0][1] - ort[1][0]);
- quat[1] = inv * (ort[0][2] + ort[2][0]);
- quat[2] = inv * (ort[2][1] + ort[1][2]);
- }
- }
- }
- return quat;
- }
- /** Revert a rotation.
- * Build a rotation which reverse the effect of another
- * rotation. This means that if r(u) = v, then r.revert(v) = u. The
- * instance is not changed.
- * @return a new rotation whose effect is the reverse of the effect
- * of the instance
- */
- public Rotation revert() {
- return new Rotation(-q0, q1, q2, q3, false);
- }
- /** Get the scalar coordinate of the quaternion.
- * @return scalar coordinate of the quaternion
- */
- public double getQ0() {
- return q0;
- }
- /** Get the first coordinate of the vectorial part of the quaternion.
- * @return first coordinate of the vectorial part of the quaternion
- */
- public double getQ1() {
- return q1;
- }
- /** Get the second coordinate of the vectorial part of the quaternion.
- * @return second coordinate of the vectorial part of the quaternion
- */
- public double getQ2() {
- return q2;
- }
- /** Get the third coordinate of the vectorial part of the quaternion.
- * @return third coordinate of the vectorial part of the quaternion
- */
- public double getQ3() {
- return q3;
- }
- /** Get the normalized axis of the rotation.
- * <p>
- * Note that as {@link #getAngle()} always returns an angle
- * between 0 and π, changing the convention changes the
- * direction of the axis, not the sign of the angle.
- * </p>
- * @param convention convention to use for the semantics of the angle
- * @return normalized axis of the rotation
- * @see #Rotation(Vector3D, double, RotationConvention)
- */
- public Vector3D getAxis(final RotationConvention convention) {
- final double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
- if (squaredSine == 0) {
- return convention == RotationConvention.VECTOR_OPERATOR ? Vector3D.PLUS_I : Vector3D.MINUS_I;
- } else {
- final double sgn = convention == RotationConvention.VECTOR_OPERATOR ? +1 : -1;
- if (q0 < 0) {
- final double inverse = sgn / FastMath.sqrt(squaredSine);
- return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
- }
- final double inverse = -sgn / FastMath.sqrt(squaredSine);
- return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
- }
- }
- /** Get the angle of the rotation.
- * @return angle of the rotation (between 0 and π)
- * @see #Rotation(Vector3D, double, RotationConvention)
- */
- public double getAngle() {
- if ((q0 < -0.1) || (q0 > 0.1)) {
- return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
- } else if (q0 < 0) {
- return 2 * FastMath.acos(-q0);
- }
- return 2 * FastMath.acos(q0);
- }
- /** Get the Cardan or Euler angles corresponding to the instance.
- * <p>The equations show that each rotation can be defined by two
- * different values of the Cardan or Euler angles set. For example
- * if Cardan angles are used, the rotation defined by the angles
- * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
- * the rotation defined by the angles π + a<sub>1</sub>, π
- * - a<sub>2</sub> and π + a<sub>3</sub>. This method implements
- * the following arbitrary choices:</p>
- * <ul>
- * <li>for Cardan angles, the chosen set is the one for which the
- * second angle is between -π/2 and π/2 (i.e its cosine is
- * positive),</li>
- * <li>for Euler angles, the chosen set is the one for which the
- * second angle is between 0 and π (i.e its sine is positive).</li>
- * </ul>
- * <p>
- * The algorithm used here works even when the rotation is exactly at the
- * the singularity of the rotation order and convention. In this case, one of
- * the angles in the singular pair is arbitrarily set to exactly 0 and the
- * second angle is computed. The angle set to 0 in the singular case is the
- * angle of the first rotation in the case of Cardan orders, and it is the angle
- * of the last rotation in the case of Euler orders. This implies that extracting
- * the angles of a rotation never fails (it used to trigger an exception in singular
- * cases up to Hipparchus 3.0).
- * </p>
- * @param order rotation order to use
- * @param convention convention to use for the semantics of the angle
- * @return an array of three angles, in the order specified by the set
- */
- public double[] getAngles(RotationOrder order, RotationConvention convention) {
- return order.getAngles(this, convention);
- }
- /** Get the 3X3 matrix corresponding to the instance
- * @return the matrix corresponding to the instance
- */
- public double[][] getMatrix() {
- // products
- double q0q0 = q0 * q0;
- double q0q1 = q0 * q1;
- double q0q2 = q0 * q2;
- double q0q3 = q0 * q3;
- double q1q1 = q1 * q1;
- double q1q2 = q1 * q2;
- double q1q3 = q1 * q3;
- double q2q2 = q2 * q2;
- double q2q3 = q2 * q3;
- double q3q3 = q3 * q3;
- // create the matrix
- double[][] m = new double[3][];
- m[0] = new double[3];
- m[1] = new double[3];
- m[2] = new double[3];
- m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
- m [1][0] = 2.0 * (q1q2 - q0q3);
- m [2][0] = 2.0 * (q1q3 + q0q2);
- m [0][1] = 2.0 * (q1q2 + q0q3);
- m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
- m [2][1] = 2.0 * (q2q3 - q0q1);
- m [0][2] = 2.0 * (q1q3 - q0q2);
- m [1][2] = 2.0 * (q2q3 + q0q1);
- m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
- return m;
- }
- /** Apply the rotation to a vector.
- * @param u vector to apply the rotation to
- * @return a new vector which is the image of u by the rotation
- */
- public Vector3D applyTo(Vector3D u) {
- double x = u.getX();
- double y = u.getY();
- double z = u.getZ();
- double s = q1 * x + q2 * y + q3 * z;
- return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
- 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
- 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
- }
- /** Apply the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to (it can be the same
- * array as in)
- */
- public void applyTo(final double[] in, final double[] out) {
- final double x = in[0];
- final double y = in[1];
- final double z = in[2];
- final double s = q1 * x + q2 * y + q3 * z;
- out[0] = 2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x;
- out[1] = 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y;
- out[2] = 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z;
- }
- /** Apply the inverse of the rotation to a vector.
- * @param u vector to apply the inverse of the rotation to
- * @return a new vector which such that u is its image by the rotation
- */
- public Vector3D applyInverseTo(Vector3D u) {
- double x = u.getX();
- double y = u.getY();
- double z = u.getZ();
- double s = q1 * x + q2 * y + q3 * z;
- double m0 = -q0;
- return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
- 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
- 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
- }
- /** Apply the inverse of the rotation to a vector stored in an array.
- * @param in an array with three items which stores vector to rotate
- * @param out an array with three items to put result to (it can be the same
- * array as in)
- */
- public void applyInverseTo(final double[] in, final double[] out) {
- final double x = in[0];
- final double y = in[1];
- final double z = in[2];
- final double s = q1 * x + q2 * y + q3 * z;
- final double m0 = -q0;
- out[0] = 2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x;
- out[1] = 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y;
- out[2] = 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z;
- }
- /** Apply the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #compose(Rotation, RotationConvention)
- * compose(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- */
- public Rotation applyTo(Rotation r) {
- return compose(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the instance to a rotation is computing the composition
- * in an order compliant with the following rule : let {@code u} be any
- * vector and {@code v} its image by {@code r1} (i.e.
- * {@code r1.applyTo(u) = v}). Let {@code w} be the image of {@code v} by
- * rotation {@code r2} (i.e. {@code r2.applyTo(v) = w}). Then
- * {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.compose(r1, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.compose(r2, RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the instance
- */
- public Rotation compose(final Rotation r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInternal(r) : r.composeInternal(this);
- }
- /** Compose the instance with another rotation using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the instance
- * using vector operator convention
- */
- private Rotation composeInternal(final Rotation r) {
- return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
- r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
- r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
- r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
- false);
- }
- /** Apply the inverse of the instance to another rotation.
- * <p>
- * Calling this method is equivalent to call
- * {@link #composeInverse(Rotation, RotationConvention)
- * composeInverse(r, RotationConvention.VECTOR_OPERATOR)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public Rotation applyInverseTo(Rotation r) {
- return composeInverse(r, RotationConvention.VECTOR_OPERATOR);
- }
- /** Compose the inverse of the instance with another rotation.
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#VECTOR_OPERATOR vector operator} convention,
- * applying the inverse of the instance to a rotation is computing
- * the composition in an order compliant with the following rule :
- * let {@code u} be any vector and {@code v} its image by {@code r1}
- * (i.e. {@code r1.applyTo(u) = v}). Let {@code w} be the inverse image
- * of {@code v} by {@code r2} (i.e. {@code r2.applyInverseTo(v) = w}).
- * Then {@code w = comp.applyTo(u)}, where
- * {@code comp = r2.composeInverse(r1)}.
- * </p>
- * <p>
- * If the semantics of the rotations composition corresponds to a
- * {@link RotationConvention#FRAME_TRANSFORM frame transform} convention,
- * the application order will be reversed, which means it is the
- * <em>innermost</em> rotation that will be reversed. So keeping the exact same
- * meaning of all {@code r1}, {@code r2}, {@code u}, {@code v}, {@code w}
- * and {@code comp} as above, {@code comp} could also be computed as
- * {@code comp = r1.revert().composeInverse(r2.revert(), RotationConvention.FRAME_TRANSFORM)}.
- * </p>
- * @param r rotation to apply the rotation to
- * @param convention convention to use for the semantics of the angle
- * @return a new rotation which is the composition of r by the inverse
- * of the instance
- */
- public Rotation composeInverse(final Rotation r, final RotationConvention convention) {
- return convention == RotationConvention.VECTOR_OPERATOR ?
- composeInverseInternal(r) : r.composeInternal(revert());
- }
- /** Compose the inverse of the instance with another rotation
- * using vector operator convention.
- * @param r rotation to apply the rotation to
- * @return a new rotation which is the composition of r by the inverse
- * of the instance using vector operator convention
- */
- private Rotation composeInverseInternal(Rotation r) {
- return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
- -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
- -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
- -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
- false);
- }
- /** Perfect orthogonality on a 3X3 matrix.
- * @param m initial matrix (not exactly orthogonal)
- * @param threshold convergence threshold for the iterative
- * orthogonality correction (convergence is reached when the
- * difference between two steps of the Frobenius norm of the
- * correction is below this threshold)
- * @return an orthogonal matrix close to m
- * @exception MathIllegalArgumentException if the matrix cannot be
- * orthogonalized with the given threshold after 10 iterations
- */
- private double[][] orthogonalizeMatrix(double[][] m, double threshold)
- throws MathIllegalArgumentException {
- double[] m0 = m[0];
- double[] m1 = m[1];
- double[] m2 = m[2];
- double x00 = m0[0];
- double x01 = m0[1];
- double x02 = m0[2];
- double x10 = m1[0];
- double x11 = m1[1];
- double x12 = m1[2];
- double x20 = m2[0];
- double x21 = m2[1];
- double x22 = m2[2];
- double fn = 0;
- double fn1;
- double[][] o = new double[3][3];
- double[] o0 = o[0];
- double[] o1 = o[1];
- double[] o2 = o[2];
- // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
- int i;
- for (i = 0; i < 11; ++i) {
- // Mt.Xn
- double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
- double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
- double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
- double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
- double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
- double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
- double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
- double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
- double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
- // Xn+1
- o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
- o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
- o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
- o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
- o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
- o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
- o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
- o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
- o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
- // correction on each elements
- double corr00 = o0[0] - m0[0];
- double corr01 = o0[1] - m0[1];
- double corr02 = o0[2] - m0[2];
- double corr10 = o1[0] - m1[0];
- double corr11 = o1[1] - m1[1];
- double corr12 = o1[2] - m1[2];
- double corr20 = o2[0] - m2[0];
- double corr21 = o2[1] - m2[1];
- double corr22 = o2[2] - m2[2];
- // Frobenius norm of the correction
- fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
- corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
- corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
- // convergence test
- if (FastMath.abs(fn1 - fn) <= threshold) {
- return o;
- }
- // prepare next iteration
- x00 = o0[0];
- x01 = o0[1];
- x02 = o0[2];
- x10 = o1[0];
- x11 = o1[1];
- x12 = o1[2];
- x20 = o2[0];
- x21 = o2[1];
- x22 = o2[2];
- fn = fn1;
- }
- // the algorithm did not converge after 10 iterations
- throw new MathIllegalArgumentException(LocalizedGeometryFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
- i - 1);
- }
- /** Compute the <i>distance</i> between two rotations.
- * <p>The <i>distance</i> is intended here as a way to check if two
- * rotations are almost similar (i.e. they transform vectors the same way)
- * or very different. It is mathematically defined as the angle of
- * the rotation r that prepended to one of the rotations gives the other
- * one: \(r_1(r) = r_2\)
- * </p>
- * <p>This distance is an angle between 0 and π. Its value is the smallest
- * possible upper bound of the angle in radians between r<sub>1</sub>(v)
- * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
- * reached for some v. The distance is equal to 0 if and only if the two
- * rotations are identical.</p>
- * <p>Comparing two rotations should always be done using this value rather
- * than for example comparing the components of the quaternions. It is much
- * more stable, and has a geometric meaning. Also comparing quaternions
- * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
- * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
- * their components are different (they are exact opposites).</p>
- * @param r1 first rotation
- * @param r2 second rotation
- * @return <i>distance</i> between r1 and r2
- */
- public static double distance(Rotation r1, Rotation r2) {
- return r1.composeInverseInternal(r2).getAngle();
- }
- }