- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * This is not the original file distributed by the Apache Software Foundation
- * It has been modified by the Hipparchus project
- */
- package org.hipparchus.geometry.euclidean.threed;
- import java.io.Serializable;
- import java.text.NumberFormat;
- import org.hipparchus.CalculusFieldElement;
- import org.hipparchus.Field;
- import org.hipparchus.analysis.polynomials.SmoothStepFactory;
- import org.hipparchus.exception.LocalizedCoreFormats;
- import org.hipparchus.exception.MathIllegalArgumentException;
- import org.hipparchus.exception.MathRuntimeException;
- import org.hipparchus.geometry.LocalizedGeometryFormats;
- import org.hipparchus.util.FastMath;
- import org.hipparchus.util.FieldBlendable;
- import org.hipparchus.util.FieldSinCos;
- import org.hipparchus.util.MathArrays;
- /**
- * This class is a re-implementation of {@link Vector3D} using {@link CalculusFieldElement}.
- * <p>Instance of this class are guaranteed to be immutable.</p>
- * @param <T> the type of the field elements
- */
- public class FieldVector3D<T extends CalculusFieldElement<T>> implements FieldBlendable<FieldVector3D<T>, T>, Serializable {
- /** Serializable version identifier. */
- private static final long serialVersionUID = 20130224L;
- /** Abscissa. */
- private final T x;
- /** Ordinate. */
- private final T y;
- /** Height. */
- private final T z;
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param x abscissa
- * @param y ordinate
- * @param z height
- * @see #getX()
- * @see #getY()
- * @see #getZ()
- */
- public FieldVector3D(final T x, final T y, final T z) {
- this.x = x;
- this.y = y;
- this.z = z;
- }
- /** Simple constructor.
- * Build a vector from its coordinates
- * @param v coordinates array
- * @exception MathIllegalArgumentException if array does not have 3 elements
- * @see #toArray()
- */
- public FieldVector3D(final T[] v) throws MathIllegalArgumentException {
- if (v.length != 3) {
- throw new MathIllegalArgumentException(LocalizedCoreFormats.DIMENSIONS_MISMATCH,
- v.length, 3);
- }
- this.x = v[0];
- this.y = v[1];
- this.z = v[2];
- }
- /** Simple constructor.
- * Build a vector from its azimuthal coordinates
- * @param alpha azimuth (α) around Z
- * (0 is +X, π/2 is +Y, π is -X and 3π/2 is -Y)
- * @param delta elevation (δ) above (XY) plane, from -π/2 to +π/2
- * @see #getAlpha()
- * @see #getDelta()
- */
- public FieldVector3D(final T alpha, final T delta) {
- FieldSinCos<T> sinCosAlpha = FastMath.sinCos(alpha);
- FieldSinCos<T> sinCosDelta = FastMath.sinCos(delta);
- this.x = sinCosAlpha.cos().multiply(sinCosDelta.cos());
- this.y = sinCosAlpha.sin().multiply(sinCosDelta.cos());
- this.z = sinCosDelta.sin();
- }
- /** Multiplicative constructor.
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector3D(final T a, final FieldVector3D<T>u) {
- this.x = a.multiply(u.x);
- this.y = a.multiply(u.y);
- this.z = a.multiply(u.z);
- }
- /** Multiplicative constructor.
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector3D(final T a, final Vector3D u) {
- this.x = a.multiply(u.getX());
- this.y = a.multiply(u.getY());
- this.z = a.multiply(u.getZ());
- }
- /** Multiplicative constructor.
- * Build a vector from another one and a scale factor.
- * The vector built will be a * u
- * @param a scale factor
- * @param u base (unscaled) vector
- */
- public FieldVector3D(final double a, final FieldVector3D<T> u) {
- this.x = u.x.multiply(a);
- this.y = u.y.multiply(a);
- this.z = u.z.multiply(a);
- }
- /** Linear constructor.
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector3D(final T a1, final FieldVector3D<T> u1,
- final T a2, final FieldVector3D<T> u2) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ());
- }
- /** Linear constructor.
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector3D(final T a1, final Vector3D u1,
- final T a2, final Vector3D u2) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2);
- this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2);
- }
- /** Linear constructor.
- * Build a vector from two other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- */
- public FieldVector3D(final double a1, final FieldVector3D<T> u1,
- final double a2, final FieldVector3D<T> u2) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ());
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector3D(final T a1, final FieldVector3D<T> u1,
- final T a2, final FieldVector3D<T> u2,
- final T a3, final FieldVector3D<T> u3) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ());
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector3D(final T a1, final Vector3D u1,
- final T a2, final Vector3D u2,
- final T a3, final Vector3D u3) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3);
- this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2, u3.getZ(), a3);
- }
- /** Linear constructor.
- * Build a vector from three other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- */
- public FieldVector3D(final double a1, final FieldVector3D<T> u1,
- final double a2, final FieldVector3D<T> u2,
- final double a3, final FieldVector3D<T> u3) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ());
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector3D(final T a1, final FieldVector3D<T> u1,
- final T a2, final FieldVector3D<T> u2,
- final T a3, final FieldVector3D<T> u3,
- final T a4, final FieldVector3D<T> u4) {
- final T prototype = a1;
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ(), a4, u4.getZ());
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector3D(final T a1, final Vector3D u1,
- final T a2, final Vector3D u2,
- final T a3, final Vector3D u3,
- final T a4, final Vector3D u4) {
- final T prototype = a1;
- this.x = prototype.linearCombination(u1.getX(), a1, u2.getX(), a2, u3.getX(), a3, u4.getX(), a4);
- this.y = prototype.linearCombination(u1.getY(), a1, u2.getY(), a2, u3.getY(), a3, u4.getY(), a4);
- this.z = prototype.linearCombination(u1.getZ(), a1, u2.getZ(), a2, u3.getZ(), a3, u4.getZ(), a4);
- }
- /** Linear constructor.
- * Build a vector from four other ones and corresponding scale factors.
- * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4
- * @param a1 first scale factor
- * @param u1 first base (unscaled) vector
- * @param a2 second scale factor
- * @param u2 second base (unscaled) vector
- * @param a3 third scale factor
- * @param u3 third base (unscaled) vector
- * @param a4 fourth scale factor
- * @param u4 fourth base (unscaled) vector
- */
- public FieldVector3D(final double a1, final FieldVector3D<T> u1,
- final double a2, final FieldVector3D<T> u2,
- final double a3, final FieldVector3D<T> u3,
- final double a4, final FieldVector3D<T> u4) {
- final T prototype = u1.getX();
- this.x = prototype.linearCombination(a1, u1.getX(), a2, u2.getX(), a3, u3.getX(), a4, u4.getX());
- this.y = prototype.linearCombination(a1, u1.getY(), a2, u2.getY(), a3, u3.getY(), a4, u4.getY());
- this.z = prototype.linearCombination(a1, u1.getZ(), a2, u2.getZ(), a3, u3.getZ(), a4, u4.getZ());
- }
- /** Build a {@link FieldVector3D} from a {@link Vector3D}.
- * @param field field for the components
- * @param v vector to convert
- */
- public FieldVector3D(final Field<T> field, final Vector3D v) {
- this.x = field.getZero().add(v.getX());
- this.y = field.getZero().add(v.getY());
- this.z = field.getZero().add(v.getZ());
- }
- /** Get null vector (coordinates: 0, 0, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getZero(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.ZERO);
- }
- /** Get first canonical vector (coordinates: 1, 0, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getPlusI(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.PLUS_I);
- }
- /** Get opposite of the first canonical vector (coordinates: -1, 0, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getMinusI(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.MINUS_I);
- }
- /** Get second canonical vector (coordinates: 0, 1, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getPlusJ(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.PLUS_J);
- }
- /** Get opposite of the second canonical vector (coordinates: 0, -1, 0).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getMinusJ(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.MINUS_J);
- }
- /** Get third canonical vector (coordinates: 0, 0, 1).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getPlusK(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.PLUS_K);
- }
- /** Get opposite of the third canonical vector (coordinates: 0, 0, -1).
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getMinusK(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.MINUS_K);
- }
- /** Get a vector with all coordinates set to NaN.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getNaN(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.NaN);
- }
- /** Get a vector with all coordinates set to positive infinity.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getPositiveInfinity(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.POSITIVE_INFINITY);
- }
- /** Get a vector with all coordinates set to negative infinity.
- * @param field field for the components
- * @return a new vector
- * @param <T> the type of the field elements
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> getNegativeInfinity(final Field<T> field) {
- return new FieldVector3D<>(field, Vector3D.NEGATIVE_INFINITY);
- }
- /** Get the abscissa of the vector.
- * @return abscissa of the vector
- * @see #FieldVector3D(CalculusFieldElement, CalculusFieldElement, CalculusFieldElement)
- */
- public T getX() {
- return x;
- }
- /** Get the ordinate of the vector.
- * @return ordinate of the vector
- * @see #FieldVector3D(CalculusFieldElement, CalculusFieldElement, CalculusFieldElement)
- */
- public T getY() {
- return y;
- }
- /** Get the height of the vector.
- * @return height of the vector
- * @see #FieldVector3D(CalculusFieldElement, CalculusFieldElement, CalculusFieldElement)
- */
- public T getZ() {
- return z;
- }
- /** Get the vector coordinates as a dimension 3 array.
- * @return vector coordinates
- * @see #FieldVector3D(CalculusFieldElement[])
- */
- public T[] toArray() {
- final T[] array = MathArrays.buildArray(x.getField(), 3);
- array[0] = x;
- array[1] = y;
- array[2] = z;
- return array;
- }
- /** Convert to a constant vector without extra field parts.
- * @return a constant vector
- */
- public Vector3D toVector3D() {
- return new Vector3D(x.getReal(), y.getReal(), z.getReal());
- }
- /** Get the L<sub>1</sub> norm for the vector.
- * @return L<sub>1</sub> norm for the vector
- */
- public T getNorm1() {
- return x.abs().add(y.abs()).add(z.abs());
- }
- /** Get the L<sub>2</sub> norm for the vector.
- * @return Euclidean norm for the vector
- */
- public T getNorm() {
- // there are no cancellation problems here, so we use the straightforward formula
- return x.square().add(y.square()).add(z.square()).sqrt();
- }
- /** Get the square of the norm for the vector.
- * @return square of the Euclidean norm for the vector
- */
- public T getNormSq() {
- // there are no cancellation problems here, so we use the straightforward formula
- return x.square().add(y.square()).add(z.square());
- }
- /** Get the L<sub>∞</sub> norm for the vector.
- * @return L<sub>∞</sub> norm for the vector
- */
- public T getNormInf() {
- return FastMath.max(FastMath.abs(x), FastMath.max(FastMath.abs(y), FastMath.abs(z)));
- }
- /** Get the azimuth of the vector.
- * @return azimuth (α) of the vector, between -π and +π
- * @see #FieldVector3D(CalculusFieldElement, CalculusFieldElement)
- */
- public T getAlpha() {
- return y.atan2(x);
- }
- /** Get the elevation of the vector.
- * @return elevation (δ) of the vector, between -π/2 and +π/2
- * @see #FieldVector3D(CalculusFieldElement, CalculusFieldElement)
- */
- public T getDelta() {
- return z.divide(getNorm()).asin();
- }
- /** Add a vector to the instance.
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final FieldVector3D<T> v) {
- return new FieldVector3D<>(x.add(v.x), y.add(v.y), z.add(v.z));
- }
- /** Add a vector to the instance.
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final Vector3D v) {
- return new FieldVector3D<>(x.add(v.getX()), y.add(v.getY()), z.add(v.getZ()));
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final T factor, final FieldVector3D<T> v) {
- return new FieldVector3D<>(x.getField().getOne(), this, factor, v);
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final T factor, final Vector3D v) {
- return new FieldVector3D<>(x.add(factor.multiply(v.getX())),
- y.add(factor.multiply(v.getY())),
- z.add(factor.multiply(v.getZ())));
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final double factor, final FieldVector3D<T> v) {
- return new FieldVector3D<>(1.0, this, factor, v);
- }
- /** Add a scaled vector to the instance.
- * @param factor scale factor to apply to v before adding it
- * @param v vector to add
- * @return a new vector
- */
- public FieldVector3D<T> add(final double factor, final Vector3D v) {
- return new FieldVector3D<>(x.add(factor * v.getX()),
- y.add(factor * v.getY()),
- z.add(factor * v.getZ()));
- }
- /** Subtract a vector from the instance.
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final FieldVector3D<T> v) {
- return new FieldVector3D<>(x.subtract(v.x), y.subtract(v.y), z.subtract(v.z));
- }
- /** Subtract a vector from the instance.
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final Vector3D v) {
- return new FieldVector3D<>(x.subtract(v.getX()), y.subtract(v.getY()), z.subtract(v.getZ()));
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final T factor, final FieldVector3D<T> v) {
- return new FieldVector3D<>(x.getField().getOne(), this, factor.negate(), v);
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final T factor, final Vector3D v) {
- return new FieldVector3D<>(x.subtract(factor.multiply(v.getX())),
- y.subtract(factor.multiply(v.getY())),
- z.subtract(factor.multiply(v.getZ())));
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final double factor, final FieldVector3D<T> v) {
- return new FieldVector3D<>(1.0, this, -factor, v);
- }
- /** Subtract a scaled vector from the instance.
- * @param factor scale factor to apply to v before subtracting it
- * @param v vector to subtract
- * @return a new vector
- */
- public FieldVector3D<T> subtract(final double factor, final Vector3D v) {
- return new FieldVector3D<>(x.subtract(factor * v.getX()),
- y.subtract(factor * v.getY()),
- z.subtract(factor * v.getZ()));
- }
- /** Get a normalized vector aligned with the instance.
- * @return a new normalized vector
- * @exception MathRuntimeException if the norm is zero
- */
- public FieldVector3D<T> normalize() throws MathRuntimeException {
- final T s = getNorm();
- if (s.getReal() == 0) {
- throw new MathRuntimeException(LocalizedGeometryFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR);
- }
- return scalarMultiply(s.reciprocal());
- }
- /** Get a vector orthogonal to the instance.
- * <p>There are an infinite number of normalized vectors orthogonal
- * to the instance. This method picks up one of them almost
- * arbitrarily. It is useful when one needs to compute a reference
- * frame with one of the axes in a predefined direction. The
- * following example shows how to build a frame having the k axis
- * aligned with the known vector u :
- * </p>
- * <pre><code>
- * Vector3D k = u.normalize();
- * Vector3D i = k.orthogonal();
- * Vector3D j = Vector3D.crossProduct(k, i);
- * </code></pre>
- * @return a new normalized vector orthogonal to the instance
- * @exception MathRuntimeException if the norm of the instance is null
- */
- public FieldVector3D<T> orthogonal() throws MathRuntimeException {
- final double threshold = 0.6 * getNorm().getReal();
- if (threshold == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- if (FastMath.abs(x.getReal()) <= threshold) {
- final T inverse = y.square().add(z.square()).sqrt().reciprocal();
- return new FieldVector3D<>(inverse.getField().getZero(), inverse.multiply(z), inverse.multiply(y).negate());
- } else if (FastMath.abs(y.getReal()) <= threshold) {
- final T inverse = x.square().add(z.square()).sqrt().reciprocal();
- return new FieldVector3D<>(inverse.multiply(z).negate(), inverse.getField().getZero(), inverse.multiply(x));
- } else {
- final T inverse = x.square().add(y.square()).sqrt().reciprocal();
- return new FieldVector3D<>(inverse.multiply(y), inverse.multiply(x).negate(), inverse.getField().getZero());
- }
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final FieldVector3D<T> v1, final FieldVector3D<T> v2)
- throws MathRuntimeException {
- final T normProduct = v1.getNorm().multiply(v2.getNorm());
- if (normProduct.getReal() == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- final T dot = dotProduct(v1, v2);
- final double threshold = normProduct.getReal() * 0.9999;
- if ((dot.getReal() < -threshold) || (dot.getReal() > threshold)) {
- // the vectors are almost aligned, compute using the sine
- FieldVector3D<T> v3 = crossProduct(v1, v2);
- if (dot.getReal() >= 0) {
- return v3.getNorm().divide(normProduct).asin();
- }
- return v3.getNorm().divide(normProduct).asin().subtract(dot.getPi()).negate();
- }
- // the vectors are sufficiently separated to use the cosine
- return dot.divide(normProduct).acos();
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final FieldVector3D<T> v1, final Vector3D v2)
- throws MathRuntimeException {
- final T normProduct = v1.getNorm().multiply(v2.getNorm());
- if (normProduct.getReal() == 0) {
- throw new MathRuntimeException(LocalizedCoreFormats.ZERO_NORM);
- }
- final T dot = dotProduct(v1, v2);
- final double threshold = normProduct.getReal() * 0.9999;
- if ((dot.getReal() < -threshold) || (dot.getReal() > threshold)) {
- // the vectors are almost aligned, compute using the sine
- FieldVector3D<T> v3 = crossProduct(v1, v2);
- if (dot.getReal() >= 0) {
- return v3.getNorm().divide(normProduct).asin();
- }
- return v3.getNorm().divide(normProduct).asin().subtract(dot.getPi()).negate();
- }
- // the vectors are sufficiently separated to use the cosine
- return dot.divide(normProduct).acos();
- }
- /** Compute the angular separation between two vectors.
- * <p>This method computes the angular separation between two
- * vectors using the dot product for well separated vectors and the
- * cross product for almost aligned vectors. This allows to have a
- * good accuracy in all cases, even for vectors very close to each
- * other.</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return angular separation between v1 and v2
- * @exception MathRuntimeException if either vector has a null norm
- */
- public static <T extends CalculusFieldElement<T>> T angle(final Vector3D v1, final FieldVector3D<T> v2)
- throws MathRuntimeException {
- return angle(v2, v1);
- }
- /** Get the opposite of the instance.
- * @return a new vector which is opposite to the instance
- */
- public FieldVector3D<T> negate() {
- return new FieldVector3D<>(x.negate(), y.negate(), z.negate());
- }
- /** Multiply the instance by a scalar.
- * @param a scalar
- * @return a new vector
- */
- public FieldVector3D<T> scalarMultiply(final T a) {
- return new FieldVector3D<>(x.multiply(a), y.multiply(a), z.multiply(a));
- }
- /** Multiply the instance by a scalar.
- * @param a scalar
- * @return a new vector
- */
- public FieldVector3D<T> scalarMultiply(final double a) {
- return new FieldVector3D<>(x.multiply(a), y.multiply(a), z.multiply(a));
- }
- /**
- * Returns true if any coordinate of this vector is NaN; false otherwise
- * @return true if any coordinate of this vector is NaN; false otherwise
- */
- public boolean isNaN() {
- return Double.isNaN(x.getReal()) || Double.isNaN(y.getReal()) || Double.isNaN(z.getReal());
- }
- /**
- * Returns true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- * @return true if any coordinate of this vector is infinite and none are NaN;
- * false otherwise
- */
- public boolean isInfinite() {
- return !isNaN() && (Double.isInfinite(x.getReal()) || Double.isInfinite(y.getReal()) || Double.isInfinite(z.getReal()));
- }
- /**
- * Test for the equality of two 3D vectors.
- * <p>
- * If all coordinates of two 3D vectors are exactly the same, and none of their
- * {@link CalculusFieldElement#getReal() real part} are <code>NaN</code>, the
- * two 3D vectors are considered to be equal.
- * </p>
- * <p>
- * <code>NaN</code> coordinates are considered to affect globally the vector
- * and be equals to each other - i.e, if either (or all) real part of the
- * coordinates of the 3D vector are <code>NaN</code>, the 3D vector is <code>NaN</code>.
- * </p>
- *
- * @param other Object to test for equality to this
- * @return true if two 3D vector objects are equal, false if
- * object is null, not an instance of FieldVector3D, or
- * not equal to this FieldVector3D instance
- *
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof FieldVector3D) {
- @SuppressWarnings("unchecked")
- final FieldVector3D<T> rhs = (FieldVector3D<T>) other;
- if (rhs.isNaN()) {
- return this.isNaN();
- }
- return x.equals(rhs.x) && y.equals(rhs.y) && z.equals(rhs.z);
- }
- return false;
- }
- /**
- * Get a hashCode for the 3D vector.
- * <p>
- * All NaN values have the same hash code.</p>
- *
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- if (isNaN()) {
- return 409;
- }
- return 311 * (107 * x.hashCode() + 83 * y.hashCode() + z.hashCode());
- }
- /** Compute the dot-product of the instance and another vector.
- * <p>
- * The implementation uses specific multiplication and addition
- * algorithms to preserve accuracy and reduce cancellation effects.
- * It should be very accurate even for nearly orthogonal vectors.
- * </p>
- * @see MathArrays#linearCombination(double, double, double, double, double, double)
- * @param v second vector
- * @return the dot product this.v
- */
- public T dotProduct(final FieldVector3D<T> v) {
- return x.linearCombination(x, v.x, y, v.y, z, v.z);
- }
- /** Compute the dot-product of the instance and another vector.
- * <p>
- * The implementation uses specific multiplication and addition
- * algorithms to preserve accuracy and reduce cancellation effects.
- * It should be very accurate even for nearly orthogonal vectors.
- * </p>
- * @see MathArrays#linearCombination(double, double, double, double, double, double)
- * @param v second vector
- * @return the dot product this.v
- */
- public T dotProduct(final Vector3D v) {
- return x.linearCombination(v.getX(), x, v.getY(), y, v.getZ(), z);
- }
- /** Compute the cross-product of the instance with another vector.
- * @param v other vector
- * @return the cross product this ^ v as a new Vector3D
- */
- public FieldVector3D<T> crossProduct(final FieldVector3D<T> v) {
- return new FieldVector3D<>(x.linearCombination(y, v.z, z.negate(), v.y),
- y.linearCombination(z, v.x, x.negate(), v.z),
- z.linearCombination(x, v.y, y.negate(), v.x));
- }
- /** Compute the cross-product of the instance with another vector.
- * @param v other vector
- * @return the cross product this ^ v as a new Vector3D
- */
- public FieldVector3D<T> crossProduct(final Vector3D v) {
- return new FieldVector3D<>(x.linearCombination(v.getZ(), y, -v.getY(), z),
- y.linearCombination(v.getX(), z, -v.getZ(), x),
- z.linearCombination(v.getY(), x, -v.getX(), y));
- }
- /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>1</sub> norm
- */
- public T distance1(final FieldVector3D<T> v) {
- final T dx = v.x.subtract(x).abs();
- final T dy = v.y.subtract(y).abs();
- final T dz = v.z.subtract(z).abs();
- return dx.add(dy).add(dz);
- }
- /** Compute the distance between the instance and another vector according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>1</sub> norm
- */
- public T distance1(final Vector3D v) {
- final T dx = x.subtract(v.getX()).abs();
- final T dy = y.subtract(v.getY()).abs();
- final T dz = z.subtract(v.getZ()).abs();
- return dx.add(dy).add(dz);
- }
- /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>2</sub> norm
- */
- public T distance(final FieldVector3D<T> v) {
- final T dx = v.x.subtract(x);
- final T dy = v.y.subtract(y);
- final T dz = v.z.subtract(z);
- return dx.square().add(dy.square()).add(dz.square()).sqrt();
- }
- /** Compute the distance between the instance and another vector according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>2</sub> norm
- */
- public T distance(final Vector3D v) {
- final T dx = x.subtract(v.getX());
- final T dy = y.subtract(v.getY());
- final T dz = z.subtract(v.getZ());
- return dx.square().add(dy.square()).add(dz.square()).sqrt();
- }
- /** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>∞</sub> norm
- */
- public T distanceInf(final FieldVector3D<T> v) {
- final T dx = v.x.subtract(x).abs();
- final T dy = v.y.subtract(y).abs();
- final T dz = v.z.subtract(z).abs();
- if (dx.getReal() <= dy.getReal()) {
- if (dy.getReal() <= dz.getReal()) {
- return dz;
- } else {
- return dy;
- }
- } else {
- if (dx.getReal() <= dz.getReal()) {
- return dz;
- } else {
- return dx;
- }
- }
- }
- /** Compute the distance between the instance and another vector according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the distance between the instance and p according to the L<sub>∞</sub> norm
- */
- public T distanceInf(final Vector3D v) {
- final T dx = x.subtract(v.getX()).abs();
- final T dy = y.subtract(v.getY()).abs();
- final T dz = z.subtract(v.getZ()).abs();
- if (dx.getReal() <= dy.getReal()) {
- if (dy.getReal() <= dz.getReal()) {
- return dz;
- } else {
- return dy;
- }
- } else {
- if (dx.getReal() <= dz.getReal()) {
- return dz;
- } else {
- return dx;
- }
- }
- }
- /** Compute the square of the distance between the instance and another vector.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the square of the distance between the instance and p
- */
- public T distanceSq(final FieldVector3D<T> v) {
- final T dx = v.x.subtract(x);
- final T dy = v.y.subtract(y);
- final T dz = v.z.subtract(z);
- return dx.square().add(dy.square()).add(dz.square());
- }
- /** Compute the square of the distance between the instance and another vector.
- * <p>Calling this method is equivalent to calling:
- * <code>q.subtract(p).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v second vector
- * @return the square of the distance between the instance and p
- */
- public T distanceSq(final Vector3D v) {
- final T dx = x.subtract(v.getX());
- final T dy = y.subtract(v.getY());
- final T dz = z.subtract(v.getZ());
- return dx.square().add(dy.square()).add(dz.square());
- }
- /** Compute the dot-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the dot product v1.v2
- */
- public static <T extends CalculusFieldElement<T>> T dotProduct(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.dotProduct(v2);
- }
- /** Compute the dot-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the dot product v1.v2
- */
- public static <T extends CalculusFieldElement<T>> T dotProduct(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.dotProduct(v2);
- }
- /** Compute the dot-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the dot product v1.v2
- */
- public static <T extends CalculusFieldElement<T>> T dotProduct(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return v2.dotProduct(v1);
- }
- /** Compute the cross-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the cross product v1 ^ v2 as a new Vector
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> crossProduct(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.crossProduct(v2);
- }
- /** Compute the cross-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the cross product v1 ^ v2 as a new Vector
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> crossProduct(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.crossProduct(v2);
- }
- /** Compute the cross-product of two vectors.
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the cross product v1 ^ v2 as a new Vector
- */
- public static <T extends CalculusFieldElement<T>> FieldVector3D<T> crossProduct(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return new FieldVector3D<>(v2.x.linearCombination(v1.getY(), v2.z, -v1.getZ(), v2.y),
- v2.y.linearCombination(v1.getZ(), v2.x, -v1.getX(), v2.z),
- v2.z.linearCombination(v1.getX(), v2.y, -v1.getY(), v2.x));
- }
- /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.distance1(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.distance1(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>1</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm1()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>1</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance1(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return v2.distance1(v1);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.distance(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.distance(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>2</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNorm()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>2</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distance(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return v2.distance(v1);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.distanceInf(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.distanceInf(v2);
- }
- /** Compute the distance between two vectors according to the L<sub>∞</sub> norm.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormInf()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the distance between v1 and v2 according to the L<sub>∞</sub> norm
- */
- public static <T extends CalculusFieldElement<T>> T distanceInf(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return v2.distanceInf(v1);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between v1 and v2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final FieldVector3D<T> v1,
- final FieldVector3D<T> v2) {
- return v1.distanceSq(v2);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between v1 and v2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final FieldVector3D<T> v1,
- final Vector3D v2) {
- return v1.distanceSq(v2);
- }
- /** Compute the square of the distance between two vectors.
- * <p>Calling this method is equivalent to calling:
- * <code>v1.subtract(v2).getNormSq()</code> except that no intermediate
- * vector is built</p>
- * @param v1 first vector
- * @param v2 second vector
- * @param <T> the type of the field elements
- * @return the square of the distance between v1 and v2
- */
- public static <T extends CalculusFieldElement<T>> T distanceSq(final Vector3D v1,
- final FieldVector3D<T> v2) {
- return v2.distanceSq(v1);
- }
- /** Get a string representation of this vector.
- * @return a string representation of this vector
- */
- @Override
- public String toString() {
- return Vector3DFormat.getVector3DFormat().format(toVector3D());
- }
- /** Get a string representation of this vector.
- * @param format the custom format for components
- * @return a string representation of this vector
- */
- public String toString(final NumberFormat format) {
- return new Vector3DFormat(format).format(toVector3D());
- }
- /** {@inheritDoc} */
- @Override
- public FieldVector3D<T> blendArithmeticallyWith(final FieldVector3D<T> other, final T blendingValue)
- throws MathIllegalArgumentException {
- SmoothStepFactory.checkBetweenZeroAndOneIncluded(blendingValue.getReal());
- final T one = x.getField().getOne();
- return this.scalarMultiply(one.subtract(blendingValue)).add(other.scalarMultiply(blendingValue));
- }
- }